一只口袋中放着若干个黄球和绿球,这两种球除了颜色之外没有其它任何区别,袋中的球已经搅匀,从口袋中取出一个球取出黄球的概率为25.(1)取出绿球的概率是多少?(2)如果袋中的-数学

首页 > 考试 > 数学 > 初中数学 > 分式方程的应用/2019-04-08 / 加入收藏 / 阅读 [打印]

题文

一只口袋中放着若干个黄球和绿球,这两种球除了颜色之外没有其它任何区别,袋中的球已经搅匀,从口袋中取出一个球取出黄球的概率为
2
5

(1)取出绿球的概率是多少?
(2)如果袋中的黄球有12个,那么袋中的绿球有多少个?
题型:解答题  难度:中档

答案

(1)P(取出绿球)=1-P(取出黄球)=1-
2
5
=
3
5


(2)设袋中有绿球x个.
根据题意,得:
x
x+12
=
3
5

解得:x=18,
经检验:x=18是所列方程的解.
答:袋中的绿球有18个.

据专家权威分析,试题“一只口袋中放着若干个黄球和绿球,这两种球除了颜色之外没有其它..”主要考查你对  分式方程的应用,概率的意义  等考点的理解。关于这些考点的“档案”如下:

分式方程的应用概率的意义

考点名称:分式方程的应用

  • 列分式方程解应用题和列整式方程解应用题步骤基本相同,但必须注意,要检验求得的解是否为原方程的根,以及是否符合题意。
    列分式方程解应用题的一般步骤是:
    ①找等量关系(审):理解题意,弄清具体情境中的已知量与未知量以及它们之间的基本关系;
    ②设:设未知数,用含x(或其他字母)表示某个未知数,由该未知数与其他数量的关系,写出表示相关量的式子;
    ③列:找出相等关系,列出分式方程;
    ④解:解这个分式方程;
    ⑤检验:双重检验,先检验是否为增根,再检验是否符合题意;
    ⑥答:写出答案。

    例题
    南宁到昆明西站的路程为828KM,一列普通列车和一列直达快车都从南宁开往昆明。直达快车的速度是普通快车速度的1.5倍,普通快车出发2H后,直达快车出发,结果比普通列车先到4H,求两次的速度.
    设普通车速度是x千米每小时则直达车是1.5x
    由题意得:
    828/x-828/1.5x=6 ,
    (828×1.5-828)/1.5x=6 ,
    414/1.5=6x,
    x=46, 1.5x=69
    答:普通车速度是46千米每小时,直达车是69千米每小时。

    无解的含义:
    1.解为增根。
    2.整式方程无解。(如:0x不等于0.)

  • 用分式解应用题的常见题型:
    (1)行程问题有路程、时间和速度三个量,其关系式是路程=速度×时间,一般式以时间为等量关系。
    (2)工程问题有工作效率、工作时间和工作总量三个量,其关系式是工作总量=工作效率×工作时间。
    (3)增长率问题,其等量关系式是原量×(1+增长率)=增长后的量,原量×(1+减少率)=减少后的量。

考点名称:概率的意义

  • 概率的意义:
    一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记作P(A)=p,概率从某种数量上刻画一个不确定事件发生的可能性的大小。
    事件和概率的表示方法:一般地,事件用英文大写字母A,B,C,…,表示事件A的概率p,可记为P(A)=P。
    事件的概率:必然事件的概率为1,不可能事件的概率为0,随机事件A的概率为0<P(A)<1。
    注:(1)在n试验中,事件A发生的频率m满足0≤m≤n,所以0≤≤1,故0≤P(A)≤1;
    (2)P(A)=0表示事件A是不可能发生的事件,P(A)=1表示事件A是必然发生的事件;
    (3)概率越大,表示事件发生的可能性越大;概率越小,表示事件发生的可能性越小;
    (4)人们通常对随机事件进行大量的反复试验来研究概率,一般大量试验事件发生的频率可作为概率的估计值。