某工程队(有甲、乙两组)承包一条路段的修建工程,要求在规定时间内完成.(1)已知甲组单独完成这项工作所需时间比规定时间多32天,乙组单独完成这项工程所需时间比规定时间多1-数学

首页 > 考试 > 数学 > 初中数学 > 分式方程的应用/2019-04-08 / 加入收藏 / 阅读 [打印]

题文

某工程队(有甲、乙两组)承包一条路段的修建工程,要求在规定时间内完成.
(1)已知甲组单独完成这项工作所需时间比规定时间多32天,乙组单独完成这项工程所需时间比规定时间多12天,如果甲、乙两组先合作20天,剩下的由甲组单独做,则要误期2天完成,那么规定时间是多少天?
(2)在实际工作中,甲、乙两组合做这项工程的
5
6
后,工程队又承包了其他路段的工程,需抽调一组过去,从按时完成任务的角度考虑,你认为留下哪一组最好?请说明理由.
题型:解答题  难度:中档

答案

(1)设规定的时间是x天,根据题意得:
x+2
x+32
+
20
x+12
=1,
解得x=28.经检验x=28是原方程的根,
答:规定的时间是28天.

(2)设甲、乙两组合作完成这项工程的
5
6
用了y天,根据题意得:
y(
1
28+32
+
1
28+12
)=
5
6

解得:y=20,
若甲组单独做剩下的工程所需时间为(1-
5
6
)÷
1
28+32
=10(天),
∵20+10=30>28,
∴甲组单独做剩下的工程不能在规定的时间内完成.
若乙组单独做剩下的工程所需时间为(1-
5
6
)÷
1
28+12
=
20
3
=6
2
3
(天),
∵20+6
2
3
=26
2
3
<28,
∴乙组单独做剩下的工程能在规定的时间内完成,
∴留下乙组最好.

据专家权威分析,试题“某工程队(有甲、乙两组)承包一条路段的修建工程,要求在规定时间..”主要考查你对  分式方程的应用  等考点的理解。关于这些考点的“档案”如下:

分式方程的应用

考点名称:分式方程的应用

  • 列分式方程解应用题和列整式方程解应用题步骤基本相同,但必须注意,要检验求得的解是否为原方程的根,以及是否符合题意。
    列分式方程解应用题的一般步骤是:
    ①找等量关系(审):理解题意,弄清具体情境中的已知量与未知量以及它们之间的基本关系;
    ②设:设未知数,用含x(或其他字母)表示某个未知数,由该未知数与其他数量的关系,写出表示相关量的式子;
    ③列:找出相等关系,列出分式方程;
    ④解:解这个分式方程;
    ⑤检验:双重检验,先检验是否为增根,再检验是否符合题意;
    ⑥答:写出答案。

    例题
    南宁到昆明西站的路程为828KM,一列普通列车和一列直达快车都从南宁开往昆明。直达快车的速度是普通快车速度的1.5倍,普通快车出发2H后,直达快车出发,结果比普通列车先到4H,求两次的速度.
    设普通车速度是x千米每小时则直达车是1.5x
    由题意得:
    828/x-828/1.5x=6 ,
    (828×1.5-828)/1.5x=6 ,
    414/1.5=6x,
    x=46, 1.5x=69
    答:普通车速度是46千米每小时,直达车是69千米每小时。

    无解的含义:
    1.解为增根。
    2.整式方程无解。(如:0x不等于0.)

  • 用分式解应用题的常见题型:
    (1)行程问题有路程、时间和速度三个量,其关系式是路程=速度×时间,一般式以时间为等量关系。
    (2)工程问题有工作效率、工作时间和工作总量三个量,其关系式是工作总量=工作效率×工作时间。
    (3)增长率问题,其等量关系式是原量×(1+增长率)=增长后的量,原量×(1+减少率)=减少后的量。