已知正n边形的周长为60,边长为a.(1)当n=3时,请直接写出a的值;(2)把正n边形的周长和边数同时增加8后,得到边数为n+8,周长为68的正多边形,设该正多边形的边长为b,有人分-数学

首页 > 考试 > 数学 > 初中数学 > 分式方程的应用/2019-04-08 / 加入收藏 / 阅读 [打印]

题文

已知正n边形的周长为60,边长为a.
(1)当n=3时,请直接写出a的值;
(2)把正n边形的周长和边数同时增加8后,得到边数为n+8,周长为68的正多边形,设该正多边形的边长为b,有人分别取n等于9、20、30,再求出相应的a与b的值,然后断言:“无论n取任何大于2的正整数,a与b一定不相等.”你认为这种说法对吗?若不对,请利用所学知识求出不符合这一说法的n的值.
题型:解答题  难度:中档

答案

(1)a=20.

(2)这种说法不对.
∵正n边形的周长为60,边长为a,正n边形的周长和边数同时增加8后,得到边数为n+8,周长为68的正多边形,设该正多边形的边长为b,
∴根据题意,得
60
n
=
68
n+8

解得n=60.
经检验,n=60是所列方程的解.
所以,当n=60时,a与b的值相等.

据专家权威分析,试题“已知正n边形的周长为60,边长为a.(1)当n=3时,请直接写出a的值;..”主要考查你对  分式方程的应用,正多边形和圆(内角,外角,中心角,边心距,边长,周长,面积的计算)  等考点的理解。关于这些考点的“档案”如下:

分式方程的应用正多边形和圆(内角,外角,中心角,边心距,边长,周长,面积的计算)

考点名称:分式方程的应用

  • 列分式方程解应用题和列整式方程解应用题步骤基本相同,但必须注意,要检验求得的解是否为原方程的根,以及是否符合题意。
    列分式方程解应用题的一般步骤是:
    ①找等量关系(审):理解题意,弄清具体情境中的已知量与未知量以及它们之间的基本关系;
    ②设:设未知数,用含x(或其他字母)表示某个未知数,由该未知数与其他数量的关系,写出表示相关量的式子;
    ③列:找出相等关系,列出分式方程;
    ④解:解这个分式方程;
    ⑤检验:双重检验,先检验是否为增根,再检验是否符合题意;
    ⑥答:写出答案。

    例题
    南宁到昆明西站的路程为828KM,一列普通列车和一列直达快车都从南宁开往昆明。直达快车的速度是普通快车速度的1.5倍,普通快车出发2H后,直达快车出发,结果比普通列车先到4H,求两次的速度.
    设普通车速度是x千米每小时则直达车是1.5x
    由题意得:
    828/x-828/1.5x=6 ,
    (828×1.5-828)/1.5x=6 ,
    414/1.5=6x,
    x=46, 1.5x=69
    答:普通车速度是46千米每小时,直达车是69千米每小时。

    无解的含义:
    1.解为增根。
    2.整式方程无解。(如:0x不等于0.)

  • 用分式解应用题的常见题型:
    (1)行程问题有路程、时间和速度三个量,其关系式是路程=速度×时间,一般式以时间为等量关系。
    (2)工程问题有工作效率、工作时间和工作总量三个量,其关系式是工作总量=工作效率×工作时间。
    (3)增长率问题,其等量关系式是原量×(1+增长率)=增长后的量,原量×(1+减少率)=减少后的量。

考点名称:正多边形和圆(内角,外角,中心角,边心距,边长,周长,面积的计算)

  • 正多边形的定义:
    各边相等,各角也相等的多边形叫做正多边形。

    正多边形和圆的关系:
    把一个圆分成n等份,依次连接各分点所得的多边形是这个圆的内接正n边形,这个圆叫这个正n边形的外接圆。

    与正多边形有关的概念:
    (1)正多边形的中心:正多边形的外接圆的圆心叫做这个正多边形的中心。
    (2)正多边形的半径:正多边形的外接圆的半径叫做这个正多边形的半径。
    (3)正多边形的边心距:正多边形的中心到正多边形一边的距离叫做这个正多边形的边心距。
    (4)正多边形的中心角:正多边形的每一边所对的外接圆的圆心角叫做这个正多边形的中心角。
    注:正n边形有n个中心角,这n个中心角相等且每个中心角为

  • 圆的计算公式:
    1.圆的边长即的周长C=2πr=或C=πd
    2.圆的面积S=πr2
    3.扇形弧长L=圆心角(弧度制)· r = n°πr/180°(n为圆心角)
    4.扇形面积S=nπ r2/360=Lr/2(L为扇形的弧长)
    5.圆的直径 d=2r
    6.圆锥侧面积 S=πrl(l为母线长)
    7.圆锥底面半径 r=n°/360°L(L为母线长)(r为底面半径)
    8.圆心角所对的弧的度数等于弧所对的圆心角的度数;
    9.圆周角的度数等于圆心角的度数的一半;
    10.圆外角的度数等于圆外角所对的长弧的度数与短弧的度数的差的一半;
    11.扇形圆心角n=(180L)/(πr)(度)。