某单位现有480套旧桌椅需要请木工师傅进行修理.甲师傅单独修理这批桌椅比乙师傅多用10天;乙师傅每天比甲师傅多修8套;甲师傅每天修理费80元,乙师傅每天修理费120元.请问:(-数学

首页 > 考试 > 数学 > 初中数学 > 分式方程的应用/2019-04-08 / 加入收藏 / 阅读 [打印]

题文

某单位现有480套旧桌椅需要请木工师傅进行修理.甲师傅单独修理这批桌椅比乙师傅多用10天;乙师傅每天比甲师傅多修8套;甲师傅每天修理费80元,乙师傅每天修理费120元.请问:
(1)甲、乙两个木工师傅每天各修桌椅多少套?
(2)在修理桌椅过程中,单位要指派一名工作人员进行质量监督,并发给他每天10元的交通补助.现有以下三种修理方案供选择:
①由甲单独修理;②由乙单独修理;③由甲、乙共同合作修理.
你认为哪种方案既省时又省钱?试比较说明.
题型:解答题  难度:中档

答案

(1)设甲师傅每天修桌椅x套,则乙师傅每天修(x+8)套.
据题意得:
480
x
-
480
x+8
=10.
整理得x2+8x-384=0.
解之得x1=-24,x2=16.
经检验x1=-24,x2=16都是原方程的解,但x1=-24不合题意,舍去.
∴x=16x+8=16+8=24.
即甲师傅每天修理16套,乙师傅每天修24套.

(2)①甲师傅单独修理所需时间和费用分别为
480÷16=30(天),(80+10)×30=2 700(元).
②乙师傅单独修理所需时间和费用分别为
480÷24=20(天),(120+10)×20=2 600(元).
③甲、乙共同合作修理所需时间和费用分别为
480÷(16+24)=12(天),(80+120+10)×12=2 520(元).
∴选择方案③既省时又省钱.

据专家权威分析,试题“某单位现有480套旧桌椅需要请木工师傅进行修理.甲师傅单独修理这..”主要考查你对  分式方程的应用  等考点的理解。关于这些考点的“档案”如下:

分式方程的应用

考点名称:分式方程的应用

  • 列分式方程解应用题和列整式方程解应用题步骤基本相同,但必须注意,要检验求得的解是否为原方程的根,以及是否符合题意。
    列分式方程解应用题的一般步骤是:
    ①找等量关系(审):理解题意,弄清具体情境中的已知量与未知量以及它们之间的基本关系;
    ②设:设未知数,用含x(或其他字母)表示某个未知数,由该未知数与其他数量的关系,写出表示相关量的式子;
    ③列:找出相等关系,列出分式方程;
    ④解:解这个分式方程;
    ⑤检验:双重检验,先检验是否为增根,再检验是否符合题意;
    ⑥答:写出答案。

    例题
    南宁到昆明西站的路程为828KM,一列普通列车和一列直达快车都从南宁开往昆明。直达快车的速度是普通快车速度的1.5倍,普通快车出发2H后,直达快车出发,结果比普通列车先到4H,求两次的速度.
    设普通车速度是x千米每小时则直达车是1.5x
    由题意得:
    828/x-828/1.5x=6 ,
    (828×1.5-828)/1.5x=6 ,
    414/1.5=6x,
    x=46, 1.5x=69
    答:普通车速度是46千米每小时,直达车是69千米每小时。

    无解的含义:
    1.解为增根。
    2.整式方程无解。(如:0x不等于0.)

  • 用分式解应用题的常见题型:
    (1)行程问题有路程、时间和速度三个量,其关系式是路程=速度×时间,一般式以时间为等量关系。
    (2)工程问题有工作效率、工作时间和工作总量三个量,其关系式是工作总量=工作效率×工作时间。
    (3)增长率问题,其等量关系式是原量×(1+增长率)=增长后的量,原量×(1+减少率)=减少后的量。