求证:(b+c-2a)3+(c+a-2b)3+(a+b-2c)3=(b+c-2a)(c+a-2b)(a+b-2c)-数学

题文

求证:(b+c-2a)3+(c+a-2b)3+(a+b-2c)3=(b+c-2a)(c+a-2b)(a+b-2c)
题型:解答题  难度:中档

答案

令A=b+c-2a,B=c+a-2b,C=a+b-2c,
则A+B+C=0,
∴A3+B3+C3-3ABC
=(A+B+C)(A2+B2+C2-AC-BC-AB)
=0,
∴A3+B3+C3=3ABC,
即(b+c-2a)3+(c+a-2b)3+(a+b-2c)3=2(b+c-2a)(c+a-2b)(a+b-2c)

据专家权威分析,试题“求证:(b+c-2a)3+(c+a-2b)3+(a+b-2c)3=(b+c-2a)(c+a-2b)(a+b-2c)-..”主要考查你对  分式的加减乘除混合运算及分式的化简  等考点的理解。关于这些考点的“档案”如下:

分式的加减乘除混合运算及分式的化简

考点名称:分式的加减乘除混合运算及分式的化简

  • 分式的加减乘除混合运算:
    分式的混合运算应先乘方,再乘除,最后算加减,有括号的先算括号内的。也可以把除法转化为乘法,再运用乘法运算。

    分式的化简:借助分式的基本性质,应用换元法、整体代入法等,通过约分和通分来达到简化分式的目的。

  • 分式的混合运算:
    在解答分式的乘除法混合运算时,注意两点,就可以了:
    注意运算的顺序:按照从左到右的顺序依次计算;
    注意分式乘除法法则的灵活应用。