(1)当m取何值时,函数y=为反比例函数?(2)已知函数y=(m2-m-2)x,y可能是x的反比例函数吗?y可能是x的正比例函数吗?-八年级数学
题文
(1)当m取何值时,函数y=为反比例函数? (2)已知函数y=(m2-m-2)x,y可能是x的反比例函数吗?y可能是x的正比例函数吗? |
答案
解:(1)由题意,得|m|-2=-1,解得m=1或m=-1, 当m=1时,m-1=0,所以m=1应舍去; 当m=-1时,m-1≠0,所以m=-1时,y=(m-1)x|m|-2为反比例函数; (2)y不可能是x的反比例函数,这是因为:当m-3=-1时,m=2, 但当m=2时,m2-m-2=22-2-2=0, 故原函数变为y=0, 所以y不可能是x的反比例函数; y可能是x的正比例函数, 这是因为:当m-3=1时,m=4, 当m=4时,m2-m-2≠0, 故当m=4时,y=(m2-m-2)xm-3是正比例函数。 |
据专家权威分析,试题“(1)当m取何值时,函数y=为反比例函数?(2)已知函数y=(m2-m-2)x,y..”主要考查你对 反比例函数的定义,正比例函数的定义 等考点的理解。关于这些考点的“档案”如下:
反比例函数的定义正比例函数的定义
考点名称:反比例函数的定义
- 一般地,函数 (k是常数,k≠0)叫做反比例函数,自变量x的取值范围是x≠0的一切实数,函数值的取值范围也是一切非零实数。
注:
(1)因为分母不能为零,所以反比例函数函数的自变量x不能为零,同样y也不能为零;
(2)由,所以反比例函数可以写成的形式,自变量x的次数为-1;
(3)在反比例函数中,两个变量成反比例关系,即,因此判定两个变量是否成反比例关系,应看是否能写成反比例函数的形式,即两个变量的积是不是一个常数。
表达式:
x是自变量,y是因变量,y是x的函数 自变量的取值范围:
①在一般的情况下,自变量x的取值范围可以是不等于0的任意实数;
②函数y的取值范围也是任意非零实数。反比例函数性质:
①反比例函数的表达式中,等号左边是函数值y,等号右边是关于自变量x的分式,分子是不为零的常数k,分母不能是多项式,只能是x的一次单项式;
②反比例函数表达式中,常数(也叫比例系数)k≠0是反比例函数定义的一个重要组成部分;
③反比例函数 (k是常数,k≠0)的自变量x的取值范围是不等式0的任意实数,函数值y的取值范围也是非零实数。
考点名称:正比例函数的定义
- 正比例函数定义:
一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数。
正比例函数属于一次函数,但一次函数却不一定是正比例函数。
正比例函数是一次函数的特殊形式,即一次函数y=kx+b中,若b=0,即所谓“y轴上的截距”为零,则为正比例函数。
正比例函数的关系式表示为:y=kx(k为比例系数)
当k>0时(一三象限),k越大,图像与y轴的距离越近。函数值y随着自变量x的增大而增大。
当k<0时(二四象限),k越小,图像与y轴的距离越近。自变量x的值增大时,y的值则逐渐减小。 正比例函数性质:
定义域
R(实数集)
值域
R(实数集)
奇偶性
奇函数
单调性
当k>0时,图像位于第一、三象限,从左往右,y随x的增大而增大(单调递增),为增函数;
当k<0时,图像位于第二、四象限,从左往右,y随x的增大而减小(单调递减),为减函数。
周期性
不是周期函数。
对称性
对称点:关于原点成中心对称
对称轴:自身所在直线;自身所在直线的垂直平分线
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |