已知:反比例函数y=(m﹣3)xm﹣2的图象是双曲线.(1)求m的值;(2)若点(﹣2,y1),(﹣1,y2),(1,y3)都在双曲线上,试比较y1,y2,y3的大小关系.-八年级数学
题文
已知:反比例函数y=(m﹣3)xm﹣2的图象是双曲线. |
(1)求m的值; (2)若点(﹣2,y1),(﹣1,y2),(1,y3)都在双曲线上,试比较y1,y2,y3的大小关系. |
答案
解: (1)根据题意,易得若反比例函数y=(m﹣3)xm﹣2的图象是双曲线, 必有m﹣2=﹣1, 解可得m=1; (2)由(1)可得,反比例函数的解析式为y=; 根据题意,易得y1=1,y2=2,y3=﹣2; 比较可得y3<y1<y2. |
据专家权威分析,试题“已知:反比例函数y=(m﹣3)xm﹣2的图象是双曲线.(1)求m的值;(2)若点..”主要考查你对 反比例函数的定义 等考点的理解。关于这些考点的“档案”如下:
反比例函数的定义
考点名称:反比例函数的定义
- 一般地,函数 (k是常数,k≠0)叫做反比例函数,自变量x的取值范围是x≠0的一切实数,函数值的取值范围也是一切非零实数。
注:
(1)因为分母不能为零,所以反比例函数函数的自变量x不能为零,同样y也不能为零;
(2)由,所以反比例函数可以写成的形式,自变量x的次数为-1;
(3)在反比例函数中,两个变量成反比例关系,即,因此判定两个变量是否成反比例关系,应看是否能写成反比例函数的形式,即两个变量的积是不是一个常数。
表达式:
x是自变量,y是因变量,y是x的函数 自变量的取值范围:
①在一般的情况下,自变量x的取值范围可以是不等于0的任意实数;
②函数y的取值范围也是任意非零实数。反比例函数性质:
①反比例函数的表达式中,等号左边是函数值y,等号右边是关于自变量x的分式,分子是不为零的常数k,分母不能是多项式,只能是x的一次单项式;
②反比例函数表达式中,常数(也叫比例系数)k≠0是反比例函数定义的一个重要组成部分;
③反比例函数 (k是常数,k≠0)的自变量x的取值范围是不等式0的任意实数,函数值y的取值范围也是非零实数。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:下列函数:①y=2x﹣1;②y=﹣;③y=x2+8x﹣2;④y=;⑤y=;⑥y=中,y是x的反比例函数的有()(填序号)-九年级数学
下一篇:反比例函数y=(a﹣3)的函数值为4时,自变量x的值是()-八年级数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |