若反比例函数y=(2m-1)xm2-2的图象在第二、四象限,则m的值是______.-数学

题文

若反比例函数y=(2m-1)xm2-2的图象在第二、四象限,则m的值是______.
题型:填空题  难度:偏易

答案

∵是反比例函数,
∴m2-2=-1,
解得m=1或-1,
∵图象在第二、四象限,
∴2m-1<0,
解得m<0.5,
∴m=-1,
故答案为-1.

据专家权威分析,试题“若反比例函数y=(2m-1)xm2-2的图象在第二、四象限,则m的值是____..”主要考查你对  反比例函数的定义,反比例函数的图像  等考点的理解。关于这些考点的“档案”如下:

反比例函数的定义反比例函数的图像

考点名称:反比例函数的定义

  • 一般地,函数 (k是常数,k≠0)叫做反比例函数,自变量x的取值范围是x≠0的一切实数,函数值的取值范围也是一切非零实数。
    注:
    (1)因为分母不能为零,所以反比例函数函数的自变量x不能为零,同样y也不能为零;
    (2)由,所以反比例函数可以写成的形式,自变量x的次数为-1;
    (3)在反比例函数中,两个变量成反比例关系,即,因此判定两个变量是否成反比例关系,应看是否能写成反比例函数的形式,即两个变量的积是不是一个常数。

    表达式:
    x是自变量,y是因变量,y是x的函数

  • 自变量的取值范围:
    ①在一般的情况下,自变量x的取值范围可以是不等于0的任意实数;
    ②函数y的取值范围也是任意非零实数。

    反比例函数性质:
    ①反比例函数的表达式中,等号左边是函数值y,等号右边是关于自变量x的分式,分子是不为零的常数k,分母不能是多项式,只能是x的一次单项式;
    ②反比例函数表达式中,常数(也叫比例系数)k≠0是反比例函数定义的一个重要组成部分;
    ③反比例函数 (k是常数,k≠0)的自变量x的取值范围是不等式0的任意实数,函数值y的取值范围也是非零实数。

考点名称:反比例函数的图像

  • 反比例函数的图象:
    反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。由于反比例函数中自变量x≠0,函数y≠0,所以,它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
    反比例函数的图像属于以原点为对称中心的中心对称的双曲线,反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(y≠0)。

  • 反比例函数图象的画法:
    1)列表:

    (2)描点:在平面直角坐标系中标出点。
    (3)连线:用平滑的曲线连接点。
    当双曲线在一三象限,K>0,在每个象限内,Y随X的增大而减小。
    当双曲线在二四象限,K<0,在每个象限内,Y随X的增大而增大。
    常见画法当两个数相等时那么曲线呈弯月型。

  • k的意义及应用:
    过反比例函数(k≠0),图像上一点P(x,y),作两坐标轴的垂线,两垂足、原点、P点组成一个矩形,矩形的面积。过反比例函数过一点,作垂线,三角形的面积为
    研究函数问题要透视函数的本质特征。反比例函数中,比例系数k有一个很重要的几何意义,那就是:过反比例函数图象上任一点P作x轴、y轴的垂线PM、PN,垂足为M、N则矩形PMON的面积
    所以,对双曲线上任意一点作x轴、y轴的垂线,它们与x轴、y轴所围成的矩形面积为常数。从而有k的绝对值。在解有关反比例函数的问题时,若能灵活运用反比例函数中k的几何意义,会给解题带来很多方便。

    推论内容:一次函数y=x+b或y=-x+b若与反比例函数存在两个交点,若设2点的横坐标分别为x1,x2,那么这两个交点与原点连线和两点之间的连线所构成的三角形面积为

  • 不同象限分比例函数图像:


    常见画法:

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐