阅读下面问题:11+2=1×(2-1)(2+1)(2-1)=2-1;13+2=3-2(3+2)(3-2)=3-2;15+2=5-2(5+2)(5-2)=5-2.根据上面解法作出选择:已知Pn是反比例函数yn=1(n+1+n)x图象上的点(n=1、2、3…2-数学

题文

阅读下面问题:
1
1+

2
=
1×(

2
-1)
(

2
+1)(

2
-1)
=

2
-1;
1

3
+

2
=

3
-

2
(

3
+

2
)(

3
-

2
)
=

3
-

2

1

5
+2
=

5
-2
(

5
+2)(

5
-2)
=

5
-2.
根据上面解法作出选择:已知Pn是反比例函数yn=
1
(

n+1
+

n
)x
图象上的点(n=1、2、3…2009),分别过Pn做x轴的垂线,垂足是Mn.连接OPn,则这2009个直角三角形的面积和为(  )
A.

2009
-1
B.
1
2
(

2009
-1)
C.
1
2
(

2010
-1)
D.

2010
-1
题型:单选题  难度:偏易

答案

S△OP1M1+S△OP2M2+S△OP3M3+…+S△OP2009M2009
=
1
2
1

2
+1
+
1

3
+

2
+
1
2+

3
+…+
1

2010
+

2009

=
1
2
(-1+

2
-

2
+

3
-

3
+2+…-

2009
+

2010

=
1
2
(

2010
-1).
故选C.

据专家权威分析,试题“阅读下面问题:11+2=1×(2-1)(2+1)(2-1)=2-1;13+2=3-2(3+2)(3-2)=..”主要考查你对  反比例函数的图像,最简二次根式  等考点的理解。关于这些考点的“档案”如下:

反比例函数的图像最简二次根式

考点名称:反比例函数的图像

  • 反比例函数的图象:
    反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。由于反比例函数中自变量x≠0,函数y≠0,所以,它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
    反比例函数的图像属于以原点为对称中心的中心对称的双曲线,反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(y≠0)。

  • 反比例函数图象的画法:
    1)列表:

    (2)描点:在平面直角坐标系中标出点。
    (3)连线:用平滑的曲线连接点。
    当双曲线在一三象限,K>0,在每个象限内,Y随X的增大而减小。
    当双曲线在二四象限,K<0,在每个象限内,Y随X的增大而增大。
    常见画法当两个数相等时那么曲线呈弯月型。

  • k的意义及应用:
    过反比例函数(k≠0),图像上一点P(x,y),作两坐标轴的垂线,两垂足、原点、P点组成一个矩形,矩形的面积。过反比例函数过一点,作垂线,三角形的面积为
    研究函数问题要透视函数的本质特征。反比例函数中,比例系数k有一个很重要的几何意义,那就是:过反比例函数图象上任一点P作x轴、y轴的垂线PM、PN,垂足为M、N则矩形PMON的面积
    所以,对双曲线上任意一点作x轴、y轴的垂线,它们与x轴、y轴所围成的矩形面积为常数。从而有k的绝对值。在解有关反比例函数的问题时,若能灵活运用反比例函数中k的几何意义,会给解题带来很多方便。

    推论内容:一次函数y=x+b或y=-x+b若与反比例函数存在两个交点,若设2点的横坐标分别为x1,x2,那么这两个交点与原点连线和两点之间的连线所构成的三角形面积为

  • 不同象限分比例函数图像:


    常见画法:

考点名称:最简二次根式

  • 最简二次根式定义:
    被开方数中不含字母,并且被开方数中所有因式的幂的指数都小于2,这样的二次根式称为最简二次根式。
    有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,则说这两个代数式互为有理化因式。

  • 最简二次根式同时满足下列三个条件:
    (1)被开方数的因数是整数,因式是整式;
    (2)被开方数中不含有能开的尽的因式;
    (3)被开方数不含分母。

  • 最简二次根式判定:
    ①在二次根式的被开方数中,只要含有分数或小数就不是最简二次根式;
    ②在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式。

    化二次根式为最简二次根式的方法和步骤:
    ①如果被开方数是分数(包括小数)或分式,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。
    ②如果被开方数是整数或整式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。