下列运算正确的是()A.13×(-3)=1B.5-8=-3C.2-3=6D.(-2013)0=0-数学

首页 > 考试 > 数学 > 初中数学 > 有理数减法/2019-02-13 / 加入收藏 / 阅读 [打印]

题文

下列运算正确的是(   )
A. ×(-3)=1 B.5-8=-3 C.2-3=6 D.(-2013)0=0
题型:单选题  难度:偏易

答案

B

据专家权威分析,试题“下列运算正确的是()A.13×(-3)=1B.5-8=-3C.2-3=6D.(-2013)0=0-数学..”主要考查你对  有理数减法,有理数乘法,零指数幂(负指数幂和指数为1)  等考点的理解。关于这些考点的“档案”如下:

有理数减法有理数乘法零指数幂(负指数幂和指数为1)

考点名称:有理数减法

  • 有理数的减法:
    已知两个有理数加数的和与其中的一个加数,求另一个加数的运算,叫做有理数的减法,减法是加法的逆运算。

  • 有理数的减法法则:
    减去一个数等于加上这个数的相反数,即a-b=a+(-b)。
    两变:减法运算变加法运算,减数变成它的相反数。
    一不变:被减数不变。可以表示成: a-b=a+(-b)。

    计算步骤:
    (1)把减法变为加法;
    (2)按加法法则进行。

  • 有理数减法点拨:
    1.引进负数之后,对于任意两个有理数都可以求出其差,不存在“不够减”的问题,并有如下结论:
    大数减小数,差为正数;
    小数减大数,差为负数;
    某数减去零,差为某数;
    零减去某数,差为某数的相反数;
    相等两数相减,差为零。

    2.在减法转化为加法时,减数必须同时变成其相反数,即“同时改变两个符号”。

考点名称:有理数乘法

  • 有理数乘法定义:
    求两个有理数因数的积的运算叫做有理数的乘法。

  • 有理数乘法的法则:
    (1)同号两数相乘,取正号,并把绝对值相乘;
    (2)异号两数相乘,取负号,并把绝对值相乘;
    (3)任何数与0相乘都得0。
    几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。

    有理数乘法的运算律:
    (1)交换律:ab=ba;
    (2)结合律:(ab)c=a(bc);
    (3)分配律:a(b+c)=ab+ac。

  • 记住乘法符号法则:
    1.几个不为0的数相乘,积的符号由负因数的个数决定,当负因数的个数是奇数时,积的符号为负;相反,当负因数的个数是偶数时,积的符号为正。
    2.几个数相乘,只要有一个数为0,积就是0。

    乘法法则的推广:
    1.几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正;
    2.几个数相乘,有一个因数为零,积就为零;
    3.几个不等于零的数相乘,首先确定积的符号,然后把绝对值相乘。

    有理数乘法的注意:
    1.乘法是指求几个相同加数的和的简便算法,引入负数后,乘法的意义没有改变;
    2.有理数乘法与有理数加法的运算步骤一样:确定符号、确定绝对值;
    3.掌握乘法法则的关键是会确定积的符号:“两数相乘,同号得正,异号得负”,切勿与有理数加法的符号法则混淆。

考点名称:零指数幂(负指数幂和指数为1)

  • 零指数幂定义:任何不等于零的数的零次幂都等于1。
    负指数幂的定义:任何不等于零的数的-n(n为正整数)次幂,等于这个数的n次幂的倒数。
    指数为1:任何不等于零的数的1次幂,所得结果都等于这个数的本身。