已知变量y与x成反比例,它的图象过点A(﹣2,3).求:(1)反比例函数解析式(2)从A(﹣2,3)向x轴和y轴分别作垂线AB、AC,垂足分别为B、C,则矩形OBAC的面积为_________.(3)当A点的横-九年级数学

题文

已知变量y与x成反比例,它的图象过点A(﹣2,3).求:
(1)反比例函数解析式
(2)从A(﹣2,3)向x轴和y轴分别作垂线AB、AC,垂足分别为B、C,则矩形OBAC的面积为 _________
(3)当A点的横坐标为﹣4时,作AB1、AC1分别垂直于x轴、y轴,B1、C1为垂足,则所得矩形OB1AC1的面积是 _________
(4)将A点在图象上任意移动到点A',作A'B'、A'C'分别垂直于x轴、y轴,B'、C'为垂足,则所得矩形OB'A'C'的面积是 _________ . 由此,你可以结合上述信息得出结论是: _________

题型:解答题  难度:中档

答案

解:(1)∵y与x成反比例,它的图象过点A(﹣2,3), 代入y=
∴k=xy=﹣6,∴y=
(2)如图1:
∵从A(﹣2,3)向x轴和y轴分别作垂线AB、AC,垂足分别为B、C,
∴AC=2,AB=3,
∴矩形OBAC的面积为:2×3=6;
(3)如图2,
∵A点的横坐标为﹣4,
∴A点的纵坐标为:y==
∴AB1=,AC1=4,
∴矩形OB1AC1的面积是:4×=6;
(4)同理可得出,A点在图象上任意移动到点A',作A'B'、A'C'分别垂直于x轴、y轴,B'、C'为垂足, 则所得矩形OB'A'C'的面积是:6,
∵反比例函数图象上的点向坐标轴作垂线与坐标轴围成的矩形的面积是定值,大小为|k|.

据专家权威分析,试题“已知变量y与x成反比例,它的图象过点A(﹣2,3).求:(1)反比例函数解..”主要考查你对  求反比例函数的解析式及反比例函数的应用,反比例函数的图像,矩形,矩形的性质,矩形的判定  等考点的理解。关于这些考点的“档案”如下:

求反比例函数的解析式及反比例函数的应用反比例函数的图像矩形,矩形的性质,矩形的判定

考点名称:求反比例函数的解析式及反比例函数的应用

  • 反比例函数解析式的确定方法:
    由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。

    反比例函数的应用:
    建立函数模型,解决实际问题。

  • 用待定系数法求反比例函数关系式的一般步骤是:
    ①设所求的反比例函数为:y= (k≠0);
    ②根据已知条件(自变量与函数的对应值)列出含k的方程;
    ③由代人法解待定系数k的值;
    ④把k值代人函数关系式y= 中。

    反比例函数应用一般步骤:
    ①审题;
    ②求出反比例函数的关系式;
    ③求出问题的答案,作答。

考点名称:反比例函数的图像

  • 反比例函数的图象:
    反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。由于反比例函数中自变量x≠0,函数y≠0,所以,它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
    反比例函数的图像属于以原点为对称中心的中心对称的双曲线,反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(y≠0)。

  • 反比例函数图象的画法:
    1)列表:

    (2)描点:在平面直角坐标系中标出点。
    (3)连线:用平滑的曲线连接点。
    当双曲线在一三象限,K>0,在每个象限内,Y随X的增大而减小。
    当双曲线在二四象限,K<0,在每个象限内,Y随X的增大而增大。
    常见画法当两个数相等时那么曲线呈弯月型。

  • k的意义及应用:
    过反比例函数(k≠0),图像上一点P(x,y),作两坐标轴的垂线,两垂足、原点、P点组成一个矩形,矩形的面积。过反比例函数过一点,作垂线,三角形的面积为
    研究函数问题要透视函数的本质特征。反比例函数中,比例系数k有一个很重要的几何意义,那就是:过反比例函数图象上任一点P作x轴、y轴的垂线PM、PN,垂足为M、N则矩形PMON的面积
    所以,对双曲线上任意一点作x轴、y轴的垂线,它们与x轴、y轴所围成的矩形面积为常数。从而有k的绝对值。在解有关反比例函数的问题时,若能灵活运用反比例函数中k的几何意义,会给解题带来很多方便。

    推论内容:一次函数y=x+b或y=-x+b若与反比例函数存在两个交点,若设2点的横坐标分别为x1,x2,那么这两个交点与原点连线和两点之间的连线所构成的三角形面积为

  • 不同象限分比例函数图像:


    常见画法:

考点名称:矩形,矩形的性质,矩形的判定

  • 矩形:
    是一种平面图形,矩形的四个角都是直角,同时矩形的对角线相等,而且矩形所在平面内任一点到其两对角线端点的距离的平方和相等。

  • 矩形的性质:
    1.矩形的4个内角都是直角;
    2.矩形的对角线相等且互相平分;
    3.矩形所在平面内任一点到其两对角线端点的距离的平方和相等;
    4.矩形既是轴对称图形,也是中心对称图形(对称轴是任何一组对边中点的连线),它至少有两条对称轴。对称中心是对角线的交点。
    5.矩形是特殊的平行四边形,矩形具有平行四边形的所有性质
    6.顺次连接矩形各边中点得到的四边形是菱形

  • 矩形的判定
    ①定义:有一个角是直角的平行四边形是矩形
    ②定理1:有三个角是直角的四边形是矩形
    ③定理2:对角线相等的平行四边形是矩形
    ④对角线互相平分且相等的四边形是矩形
    矩形的面积:S矩形=长×宽=ab。

  • 黄金矩形:
    宽与长的比是(√5-1)/2(约为0.618)的矩形叫做黄金矩形。
    黄金矩形给我们一协调、匀称的美感。世界各国许多著名的建筑,为取得最佳的视觉效果,都采用了黄金矩形的设计。如希腊的巴特农神庙等。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐