已知:如图,有一块含30°的直角三角板OAB的直角边长BO的长恰与另一块等腰直角三角板ODC的斜边OC的长相等,把该套三角板放置在平面直角坐标系中,且AB=3.(1)若双曲线的一个分支-九年级数学
题文
已知:如图,有一块含30°的直角三角板OAB的直角边长BO的长恰与另一块等腰直角三角板ODC的斜边OC的长相等,把该套三角板放置在平面直角坐标系中,且AB=3. (1)若双曲线的一个分支恰好经过点A,求双曲线的解析式; (2)若把含30°的直角三角板绕点O按顺时针方向旋转后,斜边OA恰好与x轴重叠,点A落在点A',试求图中阴影部分的面积(结果保留π). |
答案
解:(1 )在Rt △OBA 中,∠AOB=30 °,AB=3 ,cot ∠AOB=, ∴OB=ABcot30°=3,∴点A(3,3). 设双曲线的解析式为y=(k≠0).∴3=,k=9. 则双曲线的解析式为y=. (2)在Rt△OBA中,∠AOB=30°,AB=3,sin∠AOB=,sin30°=, ∴OA=6. 由题意得:∠AOC=60°, S扇形AOA ′=. 在Rt△OCD中,∠DOC=45°,OC=OB=3, ∴OD=OCcos45°=3. ∴S△ODC=. ∴S阴影=S扇形AOA′﹣S△ODC=6π﹣. |
据专家权威分析,试题“已知:如图,有一块含30°的直角三角板OAB的直角边长BO的长恰与另一..”主要考查你对 求反比例函数的解析式及反比例函数的应用,扇形面积的计算 等考点的理解。关于这些考点的“档案”如下:
求反比例函数的解析式及反比例函数的应用扇形面积的计算
考点名称:求反比例函数的解析式及反比例函数的应用
反比例函数解析式的确定方法:
由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。反比例函数的应用:
建立函数模型,解决实际问题。- 用待定系数法求反比例函数关系式的一般步骤是:
①设所求的反比例函数为:y= (k≠0);
②根据已知条件(自变量与函数的对应值)列出含k的方程;
③由代人法解待定系数k的值;
④把k值代人函数关系式y= 中。
反比例函数应用一般步骤:
①审题;
②求出反比例函数的关系式;
③求出问题的答案,作答。
考点名称:扇形面积的计算
- 扇形:
一条弧和经过这条弧两端的两条半径所围成的图形叫扇形(半圆与直径的组合也是扇形)。
显然,它是由圆周的一部分与它所对应的圆心角围成。
扇形面积公式:
(其中n是扇形的圆心角度数,R是扇形的半径,l是扇形的弧长。)
设半径R,
1.已知圆心角弧度α(或者角度n)
面积S=α/(2π)·πR2=αR2/2
S=(n/360)·πR2
2.已知弧长L:
面积S=LR/2
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:已知,在对物体做功一定的情况下,力F(牛)与此物体在力的方向上移动的距离S(米)成反比例函数关系,其图象如图所示,则当力达到20牛时,此物体在力的方向上移动的距离是_____-九年级数学
下一篇:二氧化碳的密度ρ(kg/m3)关于其体积V(m3)的函数关系式如图所示,那么函数关系式是_________。-九年级数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |