广州市努力改善空气质量,近年来空气质量明显好转,根据广州市环境保护局公布的2006﹣2010这五年各年的全年空气质量优良的天数,绘制折线图如图.根据图中信息回答:(1)这五年的-九年级数学

首页 > 考试 > 数学 > 初中数学 > 中位数和众数/2019-04-13 / 加入收藏 / 阅读 [打印]

题文

广州市努力改善空气质量,近年来空气质量明显好转,根据广州市环境保护局公布的2006﹣2010这五年各年的全年空气质量优良的天数,绘制折线图如图.根据图中信息回答:
(1)这五年的全年空气质量优良天数的中位数是             ,极差是              
(2)这五年的全年空气质量优良天数与它前一年相比,增加最多的是            年(填写年份).
(3)求这五年的全年空气质量优良天数的平均数.
题型:解答题  难度:中档

答案

解:(1)这五年的全年空气质量优良天数按照从小到大排列如下:333、334、345、347、357,所以中位数是345;极差是:357﹣333=24;
(2)2007年与2006年相比,333﹣334=﹣1,2008年与2007年相比,345﹣333=12,2009年与2008年相比,347﹣345=2,2010年与2009年相比,357﹣347=10,所以增加最多的是2008年;
(3)这五年的全年空气质量优良天数的平均数===343.2天.

据专家权威分析,试题“广州市努力改善空气质量,近年来空气质量明显好转,根据广州市环..”主要考查你对  中位数和众数,平均数,极差,折线图  等考点的理解。关于这些考点的“档案”如下:

中位数和众数平均数极差折线图

考点名称:中位数和众数

  • 中位数:一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间位置的两个数据的平均数)叫这组数据的中位数。
    众数:在一组数据中,出现次数最多的数据。

  • 中位数的位置:
    当样本数为奇数时,中位数=(N+1)/2;当样本数为偶数时,中位数为N/2与1+N/2的均值

    众数性质:
    用众数代表一组数据,可靠性较差,不过,众数不受极端数据的影响,并且求法简便。在一组数据中,如果个别数据有很大的变动,选择中位数表示这组数据的“集中趋势”就比较适合。
    当数值或被观察者没有明显次序(常发生于非数值性资料)时特别有用,由于可能无法良好定义算术平均数和中位数。例子:{鸡、鸭、鱼、鱼、鸡、鱼}的众数是鱼。
    众数算出来是销售最常用的,代表最多的 
    众数是在一组数据中,出现次数最多的数据 
    两组数据中,都是1,2出现次数最多 
    所以1,2是众数 
    众数:
    一般来说,一组数据中,出现次数最多的数就叫这组数据的众数。
    例如:1,2,3,3,4的众数是3。 
    但是,如果有两个或两个以上个数出现次数都是最多的,那么这几个数都是这组数据的众数。
    例如:1,2,2,3,3,4的众数是2和3。
    还有,如果所有数据出现的次数都一样,那么这组数据没有众数。
    例如:1,2,3,4,5没有众数。
    在高斯分布中,众数位于峰值。

    平均数、中位数和众数的特征:

    (1)平均数、中位数、众数都是表示一组数据“平均水平”的平均数。
    (2)平均数能充分利用数据提供的信息,在生活中较为常用,但它容易受极端数字的影响,且计算较繁。
    (3)中位数的优点是计算简单,受极端数字影响较小,但不能充分利用所有数字的信息。 中位数算出来可避免极端数据,代表着数据总体的中等情况。
    (4)众数的可靠性较差,它不受极端数据的影响,求法简便,当一组数据中个别数据变动较大时,适宜选择众数来表示这组数据的“集中趋势”。

  • 平均数、中位数和众数异同:
    一、相同点
    平均数、中位数和众数这三个统计量的相同之处主要表现在:都是来描述数据集中趋势的统计量;都可用来反映数据的一般水平;都可用来作为一组数据的代表。

    二、不同点
    它们之间的区别,主要表现在以下方面。
    1、定义不同
    平均数:一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。
    中位数:将一组数据按大小顺序排列,处在最中间位置的一个数叫做这组数据的中位数 。
    众数:在一组数据中出现次数最多的数叫做这组数据的众数。

    2、求法不同
    平均数:用所有数据相加的总和除以数据的个数,需要计算才得求出。
    中位数:将数据按照从小到大或从大到小的顺序排列,如果数据个数是奇数,则处于最中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数是这组数据的中位数。它的求出不需或只需简单的计算。
    众数:一组数据中出现次数最多的那个数,不必计算就可求出。

    3、个数不同
    在一组数据中,平均数和中位数都具有惟一性,但众数有时不具有惟一性。在一组数据中,可能不止一个众数,也可能没有众数。

    4、呈现不同
    平均数:是一个“虚拟”的数,是通过计算得到的,它不是数据中的原始数据。
    中位数:是一个不完全“虚拟”的数。当一组数据有奇数个时,它就是该组数据排序后最中间的那个数据,是这组数据中真实存在的一个数据;但在数据个数为偶数的情况下,中位数是最中间两个数据的平均数,它不一定与这组数据中的某个数据相等,此时的中位数就是一个虚拟的数。
    众  数:是一组数据中的原数据 ,它是真实存在的。

    5、代表不同
    平均数:反映了一组数据的平均大小,常用来一代表数据的总体 “平均水平”。
    中位数:像一条分界线,将数据分成前半部分和后半部分,因此用来代表一组数据的“中等水平”。
    众数:反映了出现次数最多的数据,用来代表一组数据的“多数水平”。
    这三个统计量虽反映有所不同,但都可表示数据的集中趋势,都可作为数据一般水平的代表。

    6、特点不同
    平均数:与每一个数据都有关,其中任何数据的变动都会相应引起平均数的变动。主要缺点是易受极端值的影响,这里的极端值是指偏大或偏小数,当出现偏大数时,平均数将会被抬高,当出现偏小数时,平均数会降低。
    中位数:与数据的排列位置有关,某些数据的变动对它没有影响;它是一组数据中间位置上的代表值,不受数据极端值的影响。
    众数:与数据出现的次数有关,着眼于对各数据出现的频率的考察,其大小只与这组数据中的部分数据有关,不受极端值的影响,其缺点是具有不惟一性,一组数据中可能会有一个众数,也可能会有多个或没有 。

    7、作用不同
    平均数:是统计中最常用的数据代表值,比较可靠和稳定,因为它与每一个数据都有关,反映出来的信息最充分。平均数既可以描述一组数据本身的整体平均情况,也可以用来作为不同组数据比较的一个标准。因此,它在生活中应用最广泛,比如我们经常所说的平均成绩、平均身高、平均体重等。
    中位数:作为一组数据的代表,可靠性比较差,因为它只利用了部分数据。但当一组数据的个别数据偏大或偏小时,用中位数来描述该组数据的集中趋势就比较合适。
    众数:作为一组数据的代表,可靠性也比较差,因为它也只利用了部分数据。。在一组数据中,如果个别数据有很大的变动,且某个数据出现的次数最多,此时用该数据(即众数)表示这组数据的“集中趋势”就比较适合。

  • 中位数、众数的求法:
    中位数:
    ①将数据按大小顺序排列;
    ②当数据个数为奇数时,中间的那个数据就是中位数;
    当数据个数为偶数时,居于中间的两个数据的平均数才是中位数。

    众数:找出频数最多的数据,若几个数据频数最多且相同,此时众数就是这几个数据。

考点名称:平均数

  • 平均数:
    是指在一组数据中所有数据之和再除以数据的个数。平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标。
    解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数。
    在统计工作中,平均数(均值)和标准差是描述数据资料集中趋势和离散程度的两个最重要的测度值。

  • 平均数的分类:
    (1)算术平均数:一般地,如果有n个数 ,那么 ,叫做这n个数的算术平均数。
    (2)加权平均数:一组数据点的权分别为,那么称为这n个数的加权平均数。
    (3)样本平均数:样本中所有个体的平均数。
    (4)总体平均数:总体中所有个体的平均数,统计学中常用样本的平均数估计总体的平均数。

  • 平均数、中位数和众数关系:
    联系:
             平均数、中位数和众数都是来刻画数据平均水平的统计量,它们各有特点。对于平均数大家比较熟悉,中位数刻画了一组数据的中等水平,众数刻画了一组数据中出现次数最多的情况。
            平均数非常明显的优点之一是,它能够利用所有数据的特征,而且比较好算。另外,在数学上,平均数是使误差平方和达到最小的统计量,也就是说利用平均数代表数据,可以使二次损失最小。因此,平均数在数学中是一个常用的统计量。但是平均数也有不足之处,正是因为它利用了所有数据的信息,平均数容易受极端数据的影响。
             例如,在一个单位里,如果经理和副经理工资特别高,就会使得这个单位所有成员工资的平均水平也表现得很高,但事实上,除去经理和副经理之外,剩余所有人的平均工资并不是很高。这时,中位数和众数可能是刻画这个单位所有人员工资平均水平更合理的统计量。
            中位数和众数这两个统计量的特点都是能够避免极端数据,但缺点是没有完全利用数据所反映出来的信息。
            由于各个统计量有各自的特征,所以需要我们根据实际问题来选择合适的统计量。
            当然,出现极端数据不一定用中位数,一般,统计上有一个方法,就要认为这个数据不是来源于这个总体的,因而把这个数据去掉。比如大家熟悉的跳水比赛评分,为什么要去掉一个最高分、一个最低分呢,就认为这两个分不是来源于这个总体,不能代表裁判的鉴赏力。于是去掉以后再求剩下数据的平均数。需要指出的是,我们处理的数据,大部分是对称的数据,数据符合或者近似符合正态分布。这时候,均值(平均数)、中位数和众数是一样的。

    区别:
            只有在数据分布偏态(不对称)的情况下,才会出现均值、中位数和众数的区别。所以说,如果是正态的话,用哪个统计量都行。如果偏态的情况特别严重的话,可以用中位数。
             除了需要刻画平均水平的统计量,统计中还有刻画数据波动情况的统计量。比如,平均数同样是5,它所代表的数据可能是1、3、5、7、9,可能是4、4.5、5、5.5、6。也就是说5所代表的不同组数据的波动情况是不一样的。怎样刻画数据的波动情况呢?很自然的想法就是用最大值减最小值,即求一组数据的极差。数学中还有方差、标准差等许多用来刻画数据特征的统计量。当然这些都是教师感兴趣、值得了解的内容,不是小学数学的教学要求。

  • 平均数的求法:
    (1)公式法:
    (2)加权平均数公式: 。

考点名称:极差

  • 极差:
    全距,又称极差,是用来表示统计资料中的变异量数,其最大值与最小值之间的差距;
    即最大值减最小值后所得之数据。
    极差是指总体各单位的标志值中,最大标志值与最小标志值之差。它是标志值变动的最大范围。极差也称为全距或范围误差,它是测定标志变动的最简单的指标。换句话说,也就是指一组数据中的最大数据与最小数据的差叫做这组数据的极差。 极差英文为range ,简写为R,表示为:R=Xmax-Xmin。移动极差(Moving Range)是其中的一种。

  • 极差特点:
    刻画数据离散程度的最简单的统计量;
    计算简单;
    不能反映中间数据的分散状况。

    移动极差:
    是指两个或多个连续样本值中最大值与最小值之差,这种差是按这样方式计算的:
    每当得到一个额外的数据点时,就在样本中加上这个新的点,同时删除其中时间上“最老的”点,然后计算与这点有关的极差,因此每个极差的计算至少与前一个极差的计算共用一个点的值。一般说来,移动极差用于单值控制图,并且通常用两点(连续的点)来计算移动极差。

    计算公式:
    极差=最大值-最小值。
    全距=最大标志值—最小标志值
    R=Xmax-Xmin
    (其中,Xmax为最大值,Xmin为最小值)
    例如 :12 12 13 14 16 21
    这组数的极差就是 :21-12=9
    例如,“早穿皮袄午穿纱”,这句话说明的气温特征数就是极差。
    方差计算公式:s2=(1/n)×[(x1-x0)2 + (x2-x0)2 +...+ (xn-x0)2](x0即为x的平均值)

  • 极差用途:
    在统计中常用极差来刻画一组数据的离散程度,以及反映的是变量分布的变异范围和离散幅度,在总体中任何两个单位的标准值之差都不能超过极差。同时,它能体现一组数据波动的范围。极差越大,离散程度越大,反之,离散程度越小。
    极差只指明了测定值的最大离散范围,而未能利用全部测量值的信息,不能细致地反映测量值彼此相符合的程度,极差是总体标准偏差的有偏估计值,当乘以校正系数之后,可以作为总体标准偏差的无偏估计值,它的优点是计算简单,含义直观,运用方便,故在数据统计处理中仍有着相当广泛的应用。 但是,它仅仅取决于两个极端值的水平,不能反映其间的变量分布情况,同时易受极端值的影响。 

考点名称:折线图

  • 定义:
    用一个单位长度表示一定的数量,根据数量的多少描出各点,然后用线段把各点顺次连接起来。
    折线统计图不但可以表示项目的具体数量,又能清楚地反映事物变化的情况。

  • 折线图特点:
    易于显示数据的变化的规律和趋势。可以用来作股市的跌涨和统计气温。

    折线图具有下列图表子类型:

    折线图和带数据标记的折线图 折线图用于显示随时间或有序类别而变化的趋势,可能显示数据点以表示单个数据值,也可能不显示这些数据点。
    在有很多数据点并且它们的显示顺序很重要时,折线图尤其有用。如果有很多类别或者数值是近似的,则应该使用不带数据标记的折线图。

  • 几种折线图区别:
    堆积折线图和带数据标记的堆积折线图:
    堆积折线图用于显示每一数值所占大小随时间或有序类别而变化的趋势,可能显示数据点以表示单个数据值,也可能不显示这些数据点。如果有很多类别或者数值是近似的,则应该使用无数据点堆积折线图。
    提示:为更好地显示此类型的数据,您可能要考虑改用堆积面积图。

    百分比堆积折线图和带数据标记的百分比堆积折线图:
    百分比堆积折线图用于显示每一数值所占百分比随时间或有序类别而变化的趋势。

    三维折线图:三维折线图将每一行或列的数据显示为三维标记。
    三维折线图具有可修改的水平轴、垂直轴和深度轴。

  • 制作折线图的步骤:
    (1)根据统计资料整理数据;
    (2)作平面直角坐标系,横轴、纵轴都标上单位长度,取长适当;一般横轴表示时间(或先后次数),纵轴表示时间序列数据;
    (3)根据数据描点。并按先后顺序将点用折线连接起来。

  • 折线图制作技巧:
    1.“字体”的处理
    建议:取消图表的字体“自动缩放”功能,这样可防止在变动图表大小时,图表项的字体发生不必要的改变。
    取消所有图表项的“自动缩放”功能,要取消所有图表项的字体“自动缩放”功能,取消图表区的“字体缩放“功能即可。可通过双击图表区,并调出“图表区格式”对话框,切换到“字体”选项卡,取消“自动缩放”前面的复选框的选择,这样便是取消了所有图表项的字体缩放功能,然后分别对各图表项的字体按需要设定字体大小。
    2.“网格线”的处理
    使用“折线图”或“散点图”时,尤其要注意淡化网格线对数据系列的影响,可取消网格线或是将其设为虚线,并改为浅色。
    3. 数据系列格式的设置
    一般不使用默认的格式设置,根据自己的需求改变“线形“或是“数据标记”及“填充”。