在对某地区一次人口抽样统计中,各年龄段的人数如下表所示(年龄为整数).请根据此表回答下列问题:年龄0~910~1920~2930~3940~4950~5960~6970~7980~89人数91117181712862(1)这次-数学
题文
在对某地区一次人口抽样统计中,各年龄段的人数如下表所示(年龄为整数).请根据此表回答下列问题:
(2)在这个样本中,年龄的中位数位于哪个年龄段内______; (3)在这个样本中,年龄在60岁以上(含60岁)的频率是______; (4)如果该地区有人口80 000,为关注人口老龄化问题,请估算该地区60岁以上(含60岁)的人口数. |
答案
(1)抽样的样本容量为:9+11+17+18+17+12+8+6+2=100; (2)∵样本容量是100,根据表格可以知道中位数在30~39年龄段内; (3)(8+6+2)÷100=0.16∴在这个样本中,年龄在60岁以上(含60岁)的频率是0.16; 故填100;30~39;0.16. (4)80 000×0.16=12800. ∴估计该地区60岁以上(含60岁)的人口数是12800人. |
据专家权威分析,试题“在对某地区一次人口抽样统计中,各年龄段的人数如下表所示(年龄为..”主要考查你对 中位数和众数,频数与频率,总体、个体、样本、样本容量,用样本估算总体 等考点的理解。关于这些考点的“档案”如下:
中位数和众数频数与频率总体、个体、样本、样本容量用样本估算总体
考点名称:中位数和众数
- 中位数:一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间位置的两个数据的平均数)叫这组数据的中位数。
众数:在一组数据中,出现次数最多的数据。 - 中位数的位置:
当样本数为奇数时,中位数=(N+1)/2;当样本数为偶数时,中位数为N/2与1+N/2的均值
众数性质:
用众数代表一组数据,可靠性较差,不过,众数不受极端数据的影响,并且求法简便。在一组数据中,如果个别数据有很大的变动,选择中位数表示这组数据的“集中趋势”就比较适合。
当数值或被观察者没有明显次序(常发生于非数值性资料)时特别有用,由于可能无法良好定义算术平均数和中位数。例子:{鸡、鸭、鱼、鱼、鸡、鱼}的众数是鱼。
众数算出来是销售最常用的,代表最多的
众数是在一组数据中,出现次数最多的数据
两组数据中,都是1,2出现次数最多
所以1,2是众数
众数:
一般来说,一组数据中,出现次数最多的数就叫这组数据的众数。
例如:1,2,3,3,4的众数是3。
但是,如果有两个或两个以上个数出现次数都是最多的,那么这几个数都是这组数据的众数。
例如:1,2,2,3,3,4的众数是2和3。
还有,如果所有数据出现的次数都一样,那么这组数据没有众数。
例如:1,2,3,4,5没有众数。
在高斯分布中,众数位于峰值。
平均数、中位数和众数的特征:
(1)平均数、中位数、众数都是表示一组数据“平均水平”的平均数。
(2)平均数能充分利用数据提供的信息,在生活中较为常用,但它容易受极端数字的影响,且计算较繁。
(3)中位数的优点是计算简单,受极端数字影响较小,但不能充分利用所有数字的信息。 中位数算出来可避免极端数据,代表着数据总体的中等情况。
(4)众数的可靠性较差,它不受极端数据的影响,求法简便,当一组数据中个别数据变动较大时,适宜选择众数来表示这组数据的“集中趋势”。 平均数、中位数和众数异同:
一、相同点
平均数、中位数和众数这三个统计量的相同之处主要表现在:都是来描述数据集中趋势的统计量;都可用来反映数据的一般水平;都可用来作为一组数据的代表。
二、不同点
它们之间的区别,主要表现在以下方面。
1、定义不同
平均数:一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。
中位数:将一组数据按大小顺序排列,处在最中间位置的一个数叫做这组数据的中位数 。
众数:在一组数据中出现次数最多的数叫做这组数据的众数。
2、求法不同
平均数:用所有数据相加的总和除以数据的个数,需要计算才得求出。
中位数:将数据按照从小到大或从大到小的顺序排列,如果数据个数是奇数,则处于最中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数是这组数据的中位数。它的求出不需或只需简单的计算。
众数:一组数据中出现次数最多的那个数,不必计算就可求出。
3、个数不同
在一组数据中,平均数和中位数都具有惟一性,但众数有时不具有惟一性。在一组数据中,可能不止一个众数,也可能没有众数。
4、呈现不同
平均数:是一个“虚拟”的数,是通过计算得到的,它不是数据中的原始数据。
中位数:是一个不完全“虚拟”的数。当一组数据有奇数个时,它就是该组数据排序后最中间的那个数据,是这组数据中真实存在的一个数据;但在数据个数为偶数的情况下,中位数是最中间两个数据的平均数,它不一定与这组数据中的某个数据相等,此时的中位数就是一个虚拟的数。
众 数:是一组数据中的原数据 ,它是真实存在的。
5、代表不同
平均数:反映了一组数据的平均大小,常用来一代表数据的总体 “平均水平”。
中位数:像一条分界线,将数据分成前半部分和后半部分,因此用来代表一组数据的“中等水平”。
众数:反映了出现次数最多的数据,用来代表一组数据的“多数水平”。
这三个统计量虽反映有所不同,但都可表示数据的集中趋势,都可作为数据一般水平的代表。
6、特点不同
平均数:与每一个数据都有关,其中任何数据的变动都会相应引起平均数的变动。主要缺点是易受极端值的影响,这里的极端值是指偏大或偏小数,当出现偏大数时,平均数将会被抬高,当出现偏小数时,平均数会降低。
中位数:与数据的排列位置有关,某些数据的变动对它没有影响;它是一组数据中间位置上的代表值,不受数据极端值的影响。
众数:与数据出现的次数有关,着眼于对各数据出现的频率的考察,其大小只与这组数据中的部分数据有关,不受极端值的影响,其缺点是具有不惟一性,一组数据中可能会有一个众数,也可能会有多个或没有 。
7、作用不同
平均数:是统计中最常用的数据代表值,比较可靠和稳定,因为它与每一个数据都有关,反映出来的信息最充分。平均数既可以描述一组数据本身的整体平均情况,也可以用来作为不同组数据比较的一个标准。因此,它在生活中应用最广泛,比如我们经常所说的平均成绩、平均身高、平均体重等。
中位数:作为一组数据的代表,可靠性比较差,因为它只利用了部分数据。但当一组数据的个别数据偏大或偏小时,用中位数来描述该组数据的集中趋势就比较合适。
众数:作为一组数据的代表,可靠性也比较差,因为它也只利用了部分数据。。在一组数据中,如果个别数据有很大的变动,且某个数据出现的次数最多,此时用该数据(即众数)表示这组数据的“集中趋势”就比较适合。- 中位数、众数的求法:
中位数:
①将数据按大小顺序排列;
②当数据个数为奇数时,中间的那个数据就是中位数;
当数据个数为偶数时,居于中间的两个数据的平均数才是中位数。
众数:找出频数最多的数据,若几个数据频数最多且相同,此时众数就是这几个数据。
考点名称:频数与频率
- 频数:一般我们称落在不同小组中的数据个数为该组的频数。
频率:频数与数据总数的比值为频率。频率反映了各组频数的大小在总数中所占的分量。 频数:
在一组依大小顺序排列的测量值中,当按一定的组距将其分组时出现在各组内的测量值的数目。
如有一组测量数据,数据的总个数N=148最小的测量值xmin=0.03,最大的测量值xmax=31.67,按组距为△x=3.000将148个数据分为11组,其中分布在15.05~18.05范围内的数据有26个,则称该数据组的频数为26。频率:
如在314159265358979324中,‘9’出现的频数是3,出现的频率是3/18=16.7%
频数也称“次数”,对总数据按某种标准进行分组,统计出各个组内含个体的个数。而频率则每个小组的频数与数据总数的比值。
在变量分配数列中,频数(频率)表明对应组标志值的作用程度。
频数(频率)数值越大表明该组标志值对于总体水平所起的作用也越大,反之,频数(频率)数值越小,表明该组标志值对于总体水平所起的作用越小。
考点名称:总体、个体、样本、样本容量
- 掌握总体、个体、样本,样本容量的概念,能正确区分总体、个体、样本、样本容量
总体、个体、样本、样本容量,这四个概念之间其实有其内在联系,
总体:我们把所要考察的对象的全体叫做总体;
个体:把组成总体的每一个考察对象叫做个体;
样本:从总体中取出的一部分个体叫做这个总体的一个样本;
样本容量:一个样本包含的个体的数量叫做这个样本的容量。
我们在区分这四个概念时,首先找出考察的对象,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量。
考点名称:用样本估算总体
- 用样本估计总体的两个手段:
(1)用样本的频率分布估计总体的分布;
(2)用样本的数字特征估计总体的数字特征,需要从总体中抽取一个质量较高的样本,才能不会产生较大的估计偏差,且样本的容量越大,估计的结果也就越精确。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |