某射击运动员在相同条件下的射击160次,其成绩记录如下:设计次数20406080100120140160射中九环以上的次数1533637997111130射中九环以上的频率0.750.830.800.790.790.7-数学
题文
某射击运动员在相同条件下的射击160次,其成绩记录如下:
(2)根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率(精确到0.1),并简述理由. |
答案
(1)48,0.81; (2)P(射中9环以上)=0.8 从频率的波动情况可以发现频率稳定在0.8附近,所以这名运动员射击一次时“射中9环以上”的概率是0.8. |
据专家权威分析,试题“某射击运动员在相同条件下的射击160次,其成绩记录如下:设计次数..”主要考查你对 方差,利用频率估算概率 等考点的理解。关于这些考点的“档案”如下:
方差利用频率估算概率
考点名称:方差
- 方差:
是各个数据与平均数之差的平方和的平均数。
在概率论和数理统计中,方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。
在许多实际问题中,研究随机变量和均值之间的偏离程度有着很重要的意义。
设有n个数据各数据x1,x2,…,xn各数据与它们的平均数的差的平方分别是,,…,,我们用它的平均数,即用来衡量这组数据的波动大小,并把它叫做这组数据的方差,记作。 - 方差特点:
(1)设c是常数,则D(c)=0。
(2)设X是随机变量,c是常数,则有D(cX)=(c2)D(X)。
(3)设 X 与 Y 是两个随机变量,则
D(X+Y)= D(X)+D(Y)+2E{[X-E(X)][Y-E(Y)]}
特别的,当X,Y是两个相互独立的随机变量,上式中右边第三项为0(常见协方差),
则D(X+Y)=D(X)+D(Y)。此性质可以推广到有限多个相互独立的随机变量之和的情况。
(4)D(X)=0的充分必要条件是X以概率为1取常数值c,即P{X=c}=1,其中E(X)=c。
(5)D(aX+bY)=a^2DX+b^2DY+2abE{[X-E(X)][Y-E(Y)]}。
意义:
在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定。
标准差:
方差的算术平均根,即,并把它叫做这组数据的标准差,它也是一个用来衡量一组数据的波动大小的重要的量。 公式:
方差是实际值与期望值之差平方的期望值,而标准差是方差算术平方根。 在实际计算中,我们用以下公式计算方差。
方差是各个数据与平均数之差的平方的平均数,即s^2=(1/n)[(x1-x_)^2+(x2-x_)^2+...+(xn-x_)^2],其中,x_表示样本的平均数,n表示样本的数量,^,xn表示个体,而s^2就表示方差。
而当用(1/n)[(x1-x_)^2+(x2-x_)^2+...+(xn-x_)^2]作为样本X的方差的估计时,发现其数学期望并不是X的方差,而是X方差的(n-1)/n倍,[1/(n-1)][(x1-x_)^2+(x2-x_)^2+...+(xn-x_)^2]的数学期望才是X的方差,用它作为X的方差的估计具有“无偏性”,所以我们总是用[1/(n-1)]∑(xi-X~)^2来估计X的方差,并且把它叫做“样本方差”。
方差,通俗点讲,就是和中心偏离的程度!用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)并把它叫做这组数据的方差。记作S².在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定。
方差分析主要用途:
①均数差别的显著性检验;
②分离各有关因素并估计其对总变异的作用;
③分析因素间的交互作用;
④方差齐性检验。
考点名称:利用频率估算概率
- 在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某个常数,可以估计这个事件发生的概率。
注:
(1)当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率;
(2)利用频率估计概率的数学依据是大数定律:当试验次数很大时,随机事件A出现的频率,稳定地在某个数值P附近摆动.这个稳定值P,叫做随机事件A的概率,并记为P(A)=P。
(3)利用频率估计出的概率是近似值。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |