(1)-4的相反数是();(2)36的平方根是();(3)当x()时,根式有意义;(4)当x()时,分式的值为零。-九年级数学

首页 > 考试 > 数学 > 初中数学 > 二次根式的定义/2019-04-14 / 加入收藏 / 阅读 [打印]

题文

(1)-4的相反数是(    );
(2)36的平方根是(    );
(3)当x(    )时,根式有意义;
(4)当x(    )时,分式的值为零。
题型:填空题  难度:中档

答案

4;±6;x≥-3;x=2

据专家权威分析,试题“(1)-4的相反数是();(2)36的平方根是();(3)当x()时,根式有意义..”主要考查你对  二次根式的定义,相反数,分式的定义 ,平方根  等考点的理解。关于这些考点的“档案”如下:

二次根式的定义相反数分式的定义 平方根

考点名称:二次根式的定义

  • 二次根式:
    我们把形如叫做二次根式。
    二次根式必须满足:
    含有二次根号“”;
    被开方数a必须是非负数。

    确定二次根式中被开方数的取值范围:
    要是二次根式有意义,被开方数a必须是非负数,即a≥0,由此可确定被开方数中字母的取值范围。

  • 二次根式性质:
    (1)a≥0 ; ≥0 (双重非负性 );

    (2)

    (3)
                                0(a=0);

    (4)

    (5)

  • 二次根式判定:
    ①二次根式必须有二次根号,如等;
    ②二次根式中,被开方数a可以是具体的一个数,也可以是代数式;
    ③二次根式定义中a≥0 是定义组成的一部分,不能省略;
    ④二次根式是一个非负数;
    ⑤二次根式与算术平方根有着内在的联系,(a≥0 )就表示a的算术平方根。

    二次根式的应用:
    主要体现在两个方面:
    (1)利用从特殊到一般,在由一般到特殊的重要思想方法,解决一些规律探索性问题;
    (2)利用二次根式解决长度、高度计算问题,根据已知量,求出一些长度或高度,或设计省料的方案,以及图形的拼接、分割问题。这个过程需要用到二次根式的计算,其实就是化简求值。

考点名称:相反数

  • 相反数的定义:
    像2和-2,5和-5这样,只有符号不同的两个数叫做互为相反数。
    相反数的几何意义:在数轴上到原点距离相等的两个点表示的两个数叫做互为相反数。
    相反数的代数意义:如果两个数的和为零,其中一个数是另一个数的相反数,这两个数称为互为相反数。

  • 相反数的特性:
    1、若a,b互为相反数,则a+b=0; 反之,若a+b=0,则a,b互为相反数;
    2、在数轴上,互为相反数(0除外)的两个点位于原点的两旁,并且关于原点对称;
    3、此时,b的相反数为﹣b=﹣(﹣a)=a,那么我们就说“相反数具有互称性”。
    4、相反数的规律:正数的相反数是负数,负数的相反数是正数,0的相反数是0。
    5、相反数的表示方法:a的相反数是-a,-a的相反数是a;a-b的相反数是b-a,b-a的相反数是a-b;a+b的相反数是-(a+b),即-a-b。


  •  

  • (互为)相反数的代数意义:
    1、只有符号不同的两个数称互为相反数。a和-a是一对互为相反数,a叫做-a的相反数,-a叫做a的相反数。注意:-a不一定是负数。a不一定是正数。(a不等于0)
    2、若两个实数a和b满足b=﹣a。我们就说b是a的相反数。
    3、两个互为相反数的实数a和b必满足a+b=0。也可以说实数a和b满足a+b=0,则这两个实数a,b互为相反数。

    相反数的判别:
    我们在利用相反数的概念进行化简时,很多情况下,把括号里的部分看成一个整体(即想象成一个数a),问题就容易解决。因此要求一个数的相反数,只要在这个数前面叫上“-”,再化简即可。

    多重符号的化简:
    1、在一个数前面添加一个“+”好,所得的数与原数相同。
    2、在一个数前面添加一个“-”号,所得的数就成为原数的相反数。
    3、对于有三个火三个以上符号的数的化简,首先要注意,一个数前面不管有多少个“+”号,可以把正号去掉,其次要看“-”号的个数,当“-”号的个数为偶数个时,结果取正,当“-”号的个数为奇数个时,结果取“-”号。

考点名称:分式的定义

  • 分式的定义:
    一般地,用A、B表示两个整式,A÷B就可以表示成的形式,如果B中含有字母,式子就叫做分式。
    其中,A叫做分式的分子,B叫做分式的分母。分式和整式通称为有理式。
    注:
    (1)分式的分母中必须含有字母;
    (2)分母的值不能为零,如果分母的值为零,那么分式无意义。

  • 分式的概念包括3个方面:
    ①分式是两个整式相除的商式,其中分子为被除式,分母为除式,分数线起除号的作用;
    ②分式的分母中必须含有字母,而分子中可以含有字母,也可以不含字母,这是区别整式的重要依据;
    ③在任何情况下,分式的分母的值都不可以为0,否则分式无意义。这里,分母是指除式而言。而不是只就分母中某一个字母来说的。也就是说,分式的分母不为零是隐含在此分式中而无须注明的条件。

    分式有意义的条件:
    (1)分式有意义条件:分母不为0;
    (2)分式无意义条件:分母为0;
    (3)分式值为0条件:分子为0且分母不为0;
    (4)分式值为正(负)数条件:分子分母同号时,分式值为正;分子分母异号时,分式值为负 。

  • 分式的区别概念:
    分式与分数的区别与联系:
    a.分式与分数在形式上是一致的,都有一条分数线,相当于除法的“÷”,都有分子和分母,都可以表示成(B≠0)的形式;
    b.分式中含有字母,由于字母可以表示不同的数,所以分式比分数更具有一般性;分数是分式中字母取特定值后的特殊情况。

    整式和分式统称为有理式。
    带有根号且根号下含有字母的式子叫做无理式。
    无限不循环小数也是无理式
    无理式和有理式统称代数式

考点名称:平方根

  • 平方根定义:
    如果一个数的平方等于a,则这个数叫做a的平方根,如果x2=a,那么x叫做a的平方根,这里a是x的平方,它是一个非负数,即a≥0。
    表示:一个正数有两个平方根,用表示平方根中正的那个,用-表示负的平方根。

  • 性质:
    ①一个正数如果有平方根,那么必定有两个,它们互为相反数。
    显然,如果我们知道了这两个平方根的一个,那么就可以及时的根据相反数的概念得到它的另一个平方根。

    ②如果一个正数x的平方等于a,即x的平方等于a,那么这个正数x叫做a的算术平方根。a
    的算术平方根记为,读作“根号a”,a叫做被开方数。

    ③规定:0的平方根是0。

    ④负数在实数范围内不能开平方,只有在复数范围内,才可以开平方根。
    例如:-1的平方根为±1,-9的平方根为±3。

    ⑤平方根包含了算术平方根,算术平方根是平方根中的一种。
    平方根和算术平方根都只有非负数才有。
    被开方数是乘方运算里的幂。
    求平方根可通过逆运算平方来求。
    开平方:求一个非负数a的平方根的运算叫做开平方,其中a叫做被开方数。
    若x的平方等于a,那么x就叫做a的平方根,即正负根号a=正负x

  • 1 至 20 的平方根:
    利用长式除法可以求平方根。长式除法需要进行加法,减法,乘法,除法等四则运算。一般计算机软件的运算精度小于20位数字,如要计算平方根到100位,四则运算的精度需100位以上。 利用高精度长式除法可以计算出 1 至 20 的 平方根如下:
    =1
    ≈1.414213562373095048801688724209698078569671875376948073176679737990732478462
    ≈1.732050807568877293527446341505872366942805253810380628055806979451933016909
    =2
    ≈2.236067977499789696409173668731276235440618359611525724270897245410520925638
    ≈2.449489742783178098197284074705891391965947480656670128432692567250960377457
    ≈2.645751311064590590501615753639260425710259183082450180368334459201068823230
    ≈2.828427124746190097603377448419396157139343750753896146353359475981464956924
    =3
    ≈3.162277660168379331998893544432718533719555139325216826857504852792594438639
    ≈3.316624790355399849114932736670686683927088545589353597058682146116484642609
    ≈3.464101615137754587054892683011744733885610507620761256111613958903866033818
    ≈3.605551275463989293119221267470495946251296573845246212710453056227166948293
    ≈3.741657386773941385583748732316549301756019807778726946303745467320035156307
    ≈3.872983346207416885179265399782399610832921705291590826587573766113483091937
    ≈4
    ≈4.123105625617660549821409855974077025147199225373620434398633573094954346338
    ≈4.242640687119285146405066172629094235709015626130844219530039213972197435386
    ≈4.358898943540673552236981983859615659137003925232444936890344138159557328203
    ≈4.472135954999579392818347337462552470881236719223051448541794490821041851276

    其中,有两数的根号可借由“口诀”记忆: (意思意思而已), (一妻三儿、一起散热)。