下列说法:①对角线互相平分且相等的四边形是菱形;②计算|2﹣|的结果为1;③正六边形的中心角为60°;④函数y=的自变量x的取值范围是x≥3.其中正确的个数有[]A.1个B.2个C.3个D.4个-八年级数学
题文
下列说法:①对角线互相平分且相等的四边形是菱形;②计算|2﹣|的结果为1;③正六边形的中心角为60°;④函数y=的自变量x的取值范围是x≥3.其中正确的个数有 |
[ ] |
A.1个 B.2个 C.3个 D.4个 |
答案
C |
据专家权威分析,试题“下列说法:①对角线互相平分且相等的四边形是菱形;②计算|2﹣|的结果..”主要考查你对 二次根式的定义,菱形,菱形的性质,菱形的判定,多边形的内角和和外角和 等考点的理解。关于这些考点的“档案”如下:
二次根式的定义菱形,菱形的性质,菱形的判定多边形的内角和和外角和
考点名称:二次根式的定义
- 二次根式:
我们把形如叫做二次根式。
二次根式必须满足:
含有二次根号“”;
被开方数a必须是非负数。
确定二次根式中被开方数的取值范围:
要是二次根式有意义,被开方数a必须是非负数,即a≥0,由此可确定被开方数中字母的取值范围。 - 二次根式性质:
(1)a≥0 ; ≥0 (双重非负性 );
(2);
(3)
0(a=0);
(4);
(5)。 二次根式判定:
①二次根式必须有二次根号,如,等;
②二次根式中,被开方数a可以是具体的一个数,也可以是代数式;
③二次根式定义中a≥0 是定义组成的一部分,不能省略;
④二次根式是一个非负数;
⑤二次根式与算术平方根有着内在的联系,(a≥0 )就表示a的算术平方根。
二次根式的应用:
主要体现在两个方面:
(1)利用从特殊到一般,在由一般到特殊的重要思想方法,解决一些规律探索性问题;
(2)利用二次根式解决长度、高度计算问题,根据已知量,求出一些长度或高度,或设计省料的方案,以及图形的拼接、分割问题。这个过程需要用到二次根式的计算,其实就是化简求值。
考点名称:菱形,菱形的性质,菱形的判定
- 菱形的定义:
在一个平面内,有一组邻边相等的平行四边形是菱形。 菱形的性质:
①菱形具有平行四边形的一切性质;
②菱形的对角线互相垂直且平分,并且每一条对角线平分一组对角;
③菱形的四条边都相等;
④菱形既是轴对称图形(两条对称轴分别是其两条对角线所在的直线),也是中心对称图形(对称中心是其重心,即两对角线的交点);
⑤在有一个角是60°角的菱形中,较短的对角线等于边长,较长的对角线是较短的对角线的根号3倍。菱形的判定:
在同一平面内,
(1)定义:有一组邻边相等的平行四边形是菱形
(2)定理1:四边都相等的四边形是菱形
(3)定理2:对角线互相垂直的平行四边形是菱形
菱形是在平行四边形的前提下定义的,首先它是平行四边形,而且是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而增加了一些特殊的性质和判定方法。
菱形的面积:S菱形=底边长×高=两条对角线乘积的一半。
考点名称:多边形的内角和和外角和
- 在平面内,由若干不在同一直线上的线段首尾顺次连接组成的封闭图形叫做多边形。
对角线:在多边形中,连接不相邻的两个顶点的线段叫做多边形的对角线。
外角:多边形的一边与另一边的反向延长线所组成的角叫做这个多边形的外角。
如图示:
多边形的内角和:
n边形的内角和等于(n-2)·180°。(多边形内角和定理)
多边形的外角和:
在多边形的每个顶点处取多边形的一个外角,它们的和叫做多边形的外角和。
多边形的外角和等于360°。(与边数无关) (多边形的外角和定理) - 多边形外角和列举:
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |