若a、b、c是△ABC的三边,化简:(a-b-c)2-|b-c-a|+(c-a-b)2.-数学
题文
若a、b、c是△ABC的三边,化简:
|
答案
原式=|a-b-c|-|b-c-a|+|c-a-b| =-(a-b-c)+(b-c-a)-(c-a-b) =-a+b+c+b-c-a-c+a+b =-a+3b-c. |
据专家权威分析,试题“若a、b、c是△ABC的三边,化简:(a-b-c)2-|b-c-a|+(c-a-b)2.-数学-..”主要考查你对 二次根式的定义,三角形的三边关系 等考点的理解。关于这些考点的“档案”如下:
二次根式的定义三角形的三边关系
考点名称:二次根式的定义
- 二次根式:
我们把形如叫做二次根式。
二次根式必须满足:
含有二次根号“”;
被开方数a必须是非负数。
确定二次根式中被开方数的取值范围:
要是二次根式有意义,被开方数a必须是非负数,即a≥0,由此可确定被开方数中字母的取值范围。 - 二次根式性质:
(1)a≥0 ; ≥0 (双重非负性 );
(2);
(3)
0(a=0);
(4);
(5)。 二次根式判定:
①二次根式必须有二次根号,如,等;
②二次根式中,被开方数a可以是具体的一个数,也可以是代数式;
③二次根式定义中a≥0 是定义组成的一部分,不能省略;
④二次根式是一个非负数;
⑤二次根式与算术平方根有着内在的联系,(a≥0 )就表示a的算术平方根。
二次根式的应用:
主要体现在两个方面:
(1)利用从特殊到一般,在由一般到特殊的重要思想方法,解决一些规律探索性问题;
(2)利用二次根式解决长度、高度计算问题,根据已知量,求出一些长度或高度,或设计省料的方案,以及图形的拼接、分割问题。这个过程需要用到二次根式的计算,其实就是化简求值。
考点名称:三角形的三边关系
三角形的三边关系:
在三角形中,任意两边和大于第三边,任意两边差小于第三边。
设三角形三边为a,b,c
则
a+b>c
a+c>b
b+c>a
a-b<c
a-c<b
b-c<a
在直角三角形中,设a、b为直角边,c为斜边。
则两直角边的平方和等于斜边平方。
在等边三角形中,a=b=c
在等腰三角形中, a,b为两腰,则a=b
在三角形ABC的内角A、B、C所对边分别为a、b、c的情况下,c2=a2+b2-2abcosc三角形的三边关系定理及推论:
(1)三角形三边关系定理:三角形的两边之和大于第三边。
推论:三角形的两边之差小于第三边。
(2)三角形三边关系定理及推论的作用:
①判断三条已知线段能否组成三角形;
②当已知两边时,可确定第三边的范围;
③证明线段不等关系。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |