下列运算正确的是[]A.-(-x+1)=x+1B.CD.(a-b)2=a2+b2-九年级数学

首页 > 考试 > 数学 > 初中数学 > 二次根式的加减/2019-04-17 / 加入收藏 / 阅读 [打印]

题文

下列运算正确的是
[     ]
A. -(-x+1)=x+ 1          
B.
C  
D. (a-b)2=a2+b2
题型:单选题  难度:中档

答案

C

据专家权威分析,试题“下列运算正确的是[]A.-(-x+1)=x+1B.CD.(a-b)2=a2+b2-九年级数..”主要考查你对  二次根式的加减,去括号与添括号,完全平方公式  等考点的理解。关于这些考点的“档案”如下:

二次根式的加减去括号与添括号完全平方公式

考点名称:二次根式的加减

  • 二次根式加减法法则:
    先把式子中各项二次根式化成最简二次根式,然后再合并同类二次根式。
    1、同类二次根式
    一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式。
    2、合并同类二次根式
    把几个同类二次根式合并为一个二次根式就叫做合并同类二次根式。
    3、二次根式加减时,可以先将二次根式化为最简二次根式,再将被开方数相同的进行合并。
    例如:(1);2+3=5(2)+2=3
    4、注意:有括号时,要先去括号。

  • 二次根式的加减注意:
    ①二次根式合并同类项与合并同类项类似,因此二次根式的加减可以对比整式的加减进行;
    ②二次根式加减混合运算的是指就是合并同类项二次根式,不是同类二次根式不能合并。如+是最简结果,不能再合并;
    ③二次根式进行加减运算时,根号外的系数因式须保留假分数形式,如,不能写成5
    ④合并同类二次根式后若系数为多项式,须添加括号。

考点名称:去括号与添括号

  • 去括号:即是按一定运算法则和顺序对算式进行脱括号的计算;
    添括号:即是按一定运算法则和顺序对算式进行添加括号的计算。

  • 变号与不变号:
    去括号、添括号都存在一个“变号”与“不变号”的问题。正确的掌握“变号”与“不变号”是较难之处,添括号时这个难点更明显(易错)。这些2.问题的关键是括号前的符号问题。
    a.若括号前面是“+”号,就出现“不变”之说,即去括号时,把括号里的各项“不变号”从括号里“解放”出来;
    b.添括号时,括号前添的是“+”号,被括起来的各项,也“不变号”进入括号就行了;
    c.若括号前面是“-”号,不论是去括号或是添括号,都会遇到“改变符号”的问题的。另外,不论是去或添括号,括号前面的符号和括号是一个整体,不能分割开来,顾此失彼。
    还有“变号”与“不变号”中都提到“各项”,要认真对待,不能只“变”或“不变”其中的一部分。

  • 去括号依据及注意事项:
    法则的依据实际是乘法分配律 
    注:
    ①要注意括号前面的符号,它是去括号后括号内各项是否变号的依据。
    ②去括号时应将括号前的符号连同括号一起去掉。
    ③要注意,括号前面是"-"时,去掉括号后,括号内的各项均要改变符号,不能只改变括号内第一项或前几项的符号,而忘记改变其余的符号。
    ④若括号前是数字因数时,应利用乘法分配律先将数与括号内的各项分别相乘再去括号,以免发生错误。
    ⑤遇到多层括号一般由里到外,逐层去括号,也可由外到里数"-"的个数。

  • 去括号法则:
    1.括号前面有“+”号,把括号和它前面的“+”号去掉,括号里各项的符号不改变;
    2.括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项的符号都要变为相反的符号。
    例:先去括号,再合并同类项
    (1)5a-(2a-4b)
    =5a-2a+4b
    =3a+4b
    (2)2x×2+3(2x-2)
    =2x×2+6x-3x×2
    = -2+6x

    例:先去括号,再合并同类项
    (1)a-(2a-b)-(a+2b)
    =a-2a+b-a-2b
    =-2a-b
    (2)(x×2-y×2)-4(2x×2-3y)
    =x×2-y×2-16x+12y
    =-14x+10y

    2(5a×2-2ab)-3(3a×2+4ab-b×2)
    =20a-4ab-18a-12ab+6b
    =2a-16ab+6b

    添括号法则
    1.如果括号前面是加号或乘号,加上括号后,括号里面的符号不变。
    2.如果括号前面是减号或除号,加上括号后,括号里面的符号全部改为与其相反的符号。
    3.添括号可以用去括号进行检验。
    字母公式:
    1.a+b+c=a+(b+c);
    2.a-b-c=a-(b+c)
    例:
    (x+2y-3)(x-2y+3)
    =[x+(2y-3)][x-(2y-3)]
    =x2-(2y-3)2
    =x2-(4y2-12y+9)
    =x2-4y2+12y-9

    (a+b+c)2
    =[(a+b)+c]2
    =(a+b)2+2(a+b)c+c2
    =a2+2ab+b2+2ac+2bc+c2
    = a2+B2+c2+2ab+2ac+2bc

考点名称:完全平方公式

  • 完全平方公式:
    两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式。
    (a+b)2=a2+2ab+b2
    (a-b)2=a2-2ab+b2

    (1)公式中的a、b可以是单项式,也就可以是多项式。
    (2)不能直接应用公式的,要善于转化变形,运用公式。
    该公式是进行代数运算与变形的重要的知识基础,是因式分解中常用到的公式。该知识点重点是对完全平方公式的熟记及应用。难点是对公式特征的理解(如对公式中积的一次项系数的理解)。

  • 结构特征:
    1.左边是两个相同的二项式相乘,右边是三项式,是左边二项式中两项的平方和,加上或减去这两项乘积的2倍;
    2.左边两项符号相同时,右边各项全用“+”号连接;
    左边两项符号相反时,右边平方项用“+”号连接后再“-”两项乘积的2倍(注:这里说项时未包括其符号在内);
    3..公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等数学式.

    记忆口诀:首平方,尾平方,2倍首尾。

  • 使用误解:
    ①漏下了一次项;
    ②混淆公式;
    ③运算结果中符号错误;
    ④变式应用难于掌握。

    注意事项:
    1、左边是一个二项式的完全平方。
    2、右边是二项平方和,加上(或减去)这两项乘积的二倍,a和b可是数,单项式,多项式。
    3、不论是还是,最后一项都是加号,不要因为前面的符号而理所当然的以为下一个符号。

  • 完全平方公式的基本变形:
    (一)、变符号
    例:运用完全平方公式计算:
    (1)(-4x+3y)2
    (2)(-a-b)2
    分析:本例改变了公式中a、b的符号,以第二小题为例,处理该问题最简单的方法是将这个式子中的(-a)看成原来公式中的a,将(-b)看成原来公式中的b,即可直接套用公式计算。
    解答:
    (1)16x2-24xy+9y2
    (2)a2+2ab+b2

    (二)、变项数:
    例:计算:(3a+2b+c)2
    分析:完全平方公式的左边是两个相同的二项式相乘,而本例中出现了三项,故应考虑将其中两项结合运用整体思想看成一项,从而化解矛盾。所以在运用公式时,(3a+2b+c)2可先变形为[(3a+2b)+c]2,直接套用公式计算。
    解答:9a2+12ab+6ac+4b2+4bc+c2

    (三)、变结构
    例:运用公式计算:
    (1)(x+y)(2x+2y)
    (2)(a+b)(-a-b)
    (3)(a-b)(b-a)
    分析;本例中所给的均是二项式乘以二项式,表面看外观结构不符合公式特征,但仔细观察易发现,只要将其中一个因式作适当变形就可以了,即
    (1)(x+y)(2x+2y)=2(x+y)2
    (2) (a+b)(-a-b)=-(a+b)2
    (3) (a-b)(b-a)=-(a-b)2