下列判断中,你认为正确的是[]A.0的绝对值是0B.是无理数C.4的平方根是2D.1的倒数是-1-九年级数学

首页 > 考试 > 数学 > 初中数学 > 平方根/2019-04-17 / 加入收藏 / 阅读 [打印]

题文

下列判断中,你认为正确的是

[     ]

A.0的绝对值是0
B.是无理数
C.4的平方根是2
D.1的倒数是-1
题型:单选题  难度:偏易

答案

A

据专家权威分析,试题“下列判断中,你认为正确的是[]A.0的绝对值是0B.是无理数C.4的..”主要考查你对  平方根,绝对值,倒数,无理数的定义  等考点的理解。关于这些考点的“档案”如下:

平方根绝对值倒数无理数的定义

考点名称:平方根

  • 平方根定义:
    如果一个数的平方等于a,则这个数叫做a的平方根,如果x2=a,那么x叫做a的平方根,这里a是x的平方,它是一个非负数,即a≥0。
    表示:一个正数有两个平方根,用表示平方根中正的那个,用-表示负的平方根。

  • 性质:
    ①一个正数如果有平方根,那么必定有两个,它们互为相反数。
    显然,如果我们知道了这两个平方根的一个,那么就可以及时的根据相反数的概念得到它的另一个平方根。

    ②如果一个正数x的平方等于a,即x的平方等于a,那么这个正数x叫做a的算术平方根。a
    的算术平方根记为,读作“根号a”,a叫做被开方数。

    ③规定:0的平方根是0。

    ④负数在实数范围内不能开平方,只有在复数范围内,才可以开平方根。
    例如:-1的平方根为±1,-9的平方根为±3。

    ⑤平方根包含了算术平方根,算术平方根是平方根中的一种。
    平方根和算术平方根都只有非负数才有。
    被开方数是乘方运算里的幂。
    求平方根可通过逆运算平方来求。
    开平方:求一个非负数a的平方根的运算叫做开平方,其中a叫做被开方数。
    若x的平方等于a,那么x就叫做a的平方根,即正负根号a=正负x

  • 1 至 20 的平方根:
    利用长式除法可以求平方根。长式除法需要进行加法,减法,乘法,除法等四则运算。一般计算机软件的运算精度小于20位数字,如要计算平方根到100位,四则运算的精度需100位以上。 利用高精度长式除法可以计算出 1 至 20 的 平方根如下:
    =1
    ≈1.414213562373095048801688724209698078569671875376948073176679737990732478462
    ≈1.732050807568877293527446341505872366942805253810380628055806979451933016909
    =2
    ≈2.236067977499789696409173668731276235440618359611525724270897245410520925638
    ≈2.449489742783178098197284074705891391965947480656670128432692567250960377457
    ≈2.645751311064590590501615753639260425710259183082450180368334459201068823230
    ≈2.828427124746190097603377448419396157139343750753896146353359475981464956924
    =3
    ≈3.162277660168379331998893544432718533719555139325216826857504852792594438639
    ≈3.316624790355399849114932736670686683927088545589353597058682146116484642609
    ≈3.464101615137754587054892683011744733885610507620761256111613958903866033818
    ≈3.605551275463989293119221267470495946251296573845246212710453056227166948293
    ≈3.741657386773941385583748732316549301756019807778726946303745467320035156307
    ≈3.872983346207416885179265399782399610832921705291590826587573766113483091937
    ≈4
    ≈4.123105625617660549821409855974077025147199225373620434398633573094954346338
    ≈4.242640687119285146405066172629094235709015626130844219530039213972197435386
    ≈4.358898943540673552236981983859615659137003925232444936890344138159557328203
    ≈4.472135954999579392818347337462552470881236719223051448541794490821041851276

    其中,有两数的根号可借由“口诀”记忆: (意思意思而已), (一妻三儿、一起散热)。

考点名称:绝对值

  • 绝对值定义:
    在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值。
    绝对值用“||”来表示。
    在数轴上,表示一个数a的点到数b的点之间的距离的值,叫做a-b的绝对值,记作|a-b|。

  • 绝对值的意义:
    1、几何的意义:
    在数轴上,一个数到原点的距离叫做该数的绝对值.如:5指在数轴上表示数5的点与原点的距离,这个距离是5,所以5的绝对值是5。

    2、代数的意义:
    非负数(正数和0,)
    非负数的绝对值是它本身,非正数的绝对值是它的相反数。
    互为相反数的两个数的绝对值相等。
    a的绝对值用“|a |”表示.读作“a的绝对值”。
    实数a的绝对值永远是非负数,即|a |≥0。
    互为相反数的两个数的绝对值相等,即|-a|=|a|。
    若a为正数,则满足|x|=a的x有两个值±a,如|x|=3,,则x=±3.

  • 绝对值的有关性质:
    ①任何有理数的绝对值都是大于或等于0的数,这是绝对值的非负性;
    ②绝对值等于0的数只有一个,就是0;
    ③绝对值等于同一个正数的数有两个,这两个数互为相反数;
    ④互为相反数的两个数的绝对值相等。

    绝对值的化简:
    绝对值意思是值一定为正值,按照“符号相同为正,符号相异为负”的原则来去绝对值符号。
    ①绝对值符号里面为负,在去掉绝对值时必须要加一个负的符号老确保整个值为正值,也就是当:
    │a│=a (a为正值,即a≥0 时);│a│=-a (a为负值,即a≤0 时)
    ②整数就找到这两个数的相同因数;
    ③小数就把这两个数同时扩大相同倍数成为整数,一般都是扩大10、100倍;
    ④分数的话就相除,得数是分数就是分子:分母,要是得数是整数,就这个数比1。

考点名称:倒数

  • 倒数的定义:
    如果两个数的乘积等于1,那么这两个数就叫做互为倒数。

  • 倒数性质
    (1)若a、b互为倒数,则ab=1,或,反之也成立;
    (2)0没有倒数;
    (3)乘积为-1的两个数互为负倒数,即ab=-1,则ab互为负倒数,反之也成立。

    倒数的特点
    一个正实数(1除外)加上它的倒数 一定大于2。
    理由:a/b,b/a为倒数当a>b时a/b一定大于1,可写为1+(a-b)/b。因为:
       b/a+(a-b)/a
    =b×b/a×b+(a÷b-b×b)/ab
    =(a×a-b×b+b×b)/ab
    =a×a/a×b,
    又因为a>b,
    所以a·a>a·b,
    所以a·a/a·b>1,
    所以1+(a-b)/b+a·a/a·b>2,
    所以一个正实数加上它的倒数一定大于2。
    当b>a时也一样。
    同理可证,一个负实数(-1除外)加上它的倒数一定小于-2。

  • 倒数的求法:
    1.求一个分数的倒数,例如3/4,我们只须把3/4这个分数的分子和分母交换位置,即得3/4的倒数为4/3。

    2.求一个整数的倒数,只须把这个整数看成是分母为1的分数,然后再按求分数倒数的方法即可得到。
    如12,即12/1,再把12/1这个分数的分子和分母交换位置,把分子做分母,分母做分子,则有1/12。 即12倒数是1/12。
    说明:倒数是本身的数是1和-1。(0没有倒数)

    把0.25化成分数,即1/4
    再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子.则是4/1
    再把4/1化成整数,即4
    所以0.25是4的倒数。也可以说4是0.25的倒数
    也可以用1去除以这个数,例如0.25
    1/0.25等于4
    所以0.25的倒数4.
    因为乘积是1的两个数互为倒数。
    分数、整数也都使不完整用这种规律。

考点名称:无理数的定义

  • 无理数定义:
    即非有理数之实数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。 常见的无理数有大部分的平方根、π和e(其中后两者同时为超越数)等。
    无理数是无限不循环小数。如圆周率π、等。

  • 无理数性质:
    无限不循环的小数就是无理数 。换句话说,就是不可以化为整数或者整数比的数 
    性质1 无理数加(减)无理数既可以是无理数又可以是有理数 
    性质2 无理数乘(除)无理数既可以是无理数又可以是有理数 
    性质3 无理数加(减)有理数一定是无理数 
    性质4 无理数乘(除)一个非0有理数一定是无理数

  • 无理数与有理数的区别:
    1、把有理数和无理数都写成小数形式时,有理数能写成有限小数和无限循环小数,
    比如:4=4.0,=0.8,=0.33333……
    而无理数只能写成无限不循环小数,
    比如:=1.414213562…………
    根据这一点,人们把无理数定义为无限不循环小数;
    2、所有的有理数都可以写成两个整数之比,而无理数不能。根据这一点,有人建议给无理数摘掉,把有理数改叫为“比数”,把无理数改叫为“非比数”。

  • 无理数的识别:
    判断一个数是不是无理数,关键就看它能不能写出无限不循环小数,而把无理数写成无限不循环小数,不但麻烦,而且还是我们利用现有知识无法解决的难题。
    初中常见的无理数有三种类型:
    (1)含根号且开方开不尽的方根,但切不可认为带根号的数都是无理数;
    (2)化简后含π的式子;
    (3)不循环的无限小数。
    掌握常见无理数的类型有助于识别无理数。

  • 无理数的历史:
    毕达哥拉斯(Pythagqras,约公元前885年至公元前400年间)是古希腊的大数学家。他证明许多重要的定理,包括后来以他的名字命名的毕达哥拉斯定理(勾股弦定理),即直角三角形两直角边为边长的正方形的面积之和等于以斜边为边长的正方形的面积。毕达哥拉斯将数学知识运用得纯熟之后,觉得不能只满足于用来算题解题,于是他试着从数学领域扩大到哲学,用数的观点去解释一下世界。经过一番刻苦实践,他提出“凡物皆数”的观点,数的元素就是万物的元素,世界是由数组成的,世界上的一切没有不可以用数来表示的,数本身就是世界的秩序。在他死后大约200年,他的门徒们把这种理论加以研究发展,形成了一个强大的毕达哥拉斯学派。
    公元前500年,古希腊毕达哥拉斯(Pythagoras)学派的弟子希伯索斯(Hippasus)发现了一个惊人的事实,一个正方形的对角线与其一边的长度是不可公度的(若正方形的边长为1,则对角线的长不是一个有理数),这一不可公度性与毕氏学派的“万物皆数”(指有理数)的哲理大相径庭。这一发现使该学派领导人惶恐,认为这将动摇他们在学术界的统治地位,于是极力封锁该真理的流传,希伯索斯被迫流亡他乡,不幸的是,在一条海船上还是遇到毕氏门徒,于是希伯索斯被残忍地扔进了大海。
    希伯索斯的发现,第一次向人们揭示了有理数系的缺陷,证明了它不能同连续的无限直线等同看待,有理数并没有布满数轴上的点,在数轴上存在着不能用有理数表示的“孔隙”。而这种“孔隙”经后人证明简直多得“不可胜数”。于是,古希腊人把有理数视为连续衔接的那种算术连续统的设想彻底地破灭了。不可公度量的发现连同芝诺悖论一同被称为数学史上的第一次数学危机,对以后2000多年数学的发展产生了深远的影响,促使人们从依靠直觉、经验而转向依靠证明,推动了公理几何学和逻辑学的发展,并且孕育了微积分思想萌芽。
    不可约的本质是什么?长期以来众说纷纭,得不到正确的解释,两个不可通约的比值也一直认为是不可理喻的数。15世纪意大利著名画家达.芬奇称之为“无理的数”,17世纪德国天文学家开普勒称之为“不可名状”的数。
    然而真理毕竟是淹没不了的,毕氏学派抹杀真理才是“无理”。人们为了纪念希伯索斯这位为真理而献身的可敬学者,就把不可通约的量取名“无理数”——这就是无理数的由来。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐