下列命题:①4的平方根是2;②所有的矩形都相似;③“在一个标准大气压下,将水加热到100℃就会沸腾”是必然事件;④在同一盏路灯的灯光下,若甲的身高比乙高,则甲的影子比乙的影子-数学

首页 > 考试 > 数学 > 初中数学 > 平方根/2019-04-17 / 加入收藏 / 阅读 [打印]

题文

下列命题:
①4的平方根是2;
②所有的矩形都相似;
③“在一个标准大气压下,将水加热到100℃就会沸腾”是必然事件;
④在同一盏路灯的灯光下,若甲的身高比乙高,则甲的影子比乙的影子长.
其中正确的命题共有(  )
A.1个B.2个C.3个D.4个
题型:单选题  难度:偏易

答案

在①中,由于正数的平方根有两个,所以4的平方根是±2,故①错误;
在②中,四边形要相似,则需对应角相等,对应边的比相等,故②错误;
在③中,根据常识,是必然发生的,故正确;
在④中,由于离灯的远近不一样,故结论错误.
∴有一个正确.
故选A.

据专家权威分析,试题“下列命题:①4的平方根是2;②所有的矩形都相似;③“在一个标准大气压..”主要考查你对  平方根,随机事件,相似多边形的性质,投影  等考点的理解。关于这些考点的“档案”如下:

平方根随机事件相似多边形的性质投影

考点名称:平方根

  • 平方根定义:
    如果一个数的平方等于a,则这个数叫做a的平方根,如果x2=a,那么x叫做a的平方根,这里a是x的平方,它是一个非负数,即a≥0。
    表示:一个正数有两个平方根,用表示平方根中正的那个,用-表示负的平方根。

  • 性质:
    ①一个正数如果有平方根,那么必定有两个,它们互为相反数。
    显然,如果我们知道了这两个平方根的一个,那么就可以及时的根据相反数的概念得到它的另一个平方根。

    ②如果一个正数x的平方等于a,即x的平方等于a,那么这个正数x叫做a的算术平方根。a
    的算术平方根记为,读作“根号a”,a叫做被开方数。

    ③规定:0的平方根是0。

    ④负数在实数范围内不能开平方,只有在复数范围内,才可以开平方根。
    例如:-1的平方根为±1,-9的平方根为±3。

    ⑤平方根包含了算术平方根,算术平方根是平方根中的一种。
    平方根和算术平方根都只有非负数才有。
    被开方数是乘方运算里的幂。
    求平方根可通过逆运算平方来求。
    开平方:求一个非负数a的平方根的运算叫做开平方,其中a叫做被开方数。
    若x的平方等于a,那么x就叫做a的平方根,即正负根号a=正负x

  • 1 至 20 的平方根:
    利用长式除法可以求平方根。长式除法需要进行加法,减法,乘法,除法等四则运算。一般计算机软件的运算精度小于20位数字,如要计算平方根到100位,四则运算的精度需100位以上。 利用高精度长式除法可以计算出 1 至 20 的 平方根如下:
    =1
    ≈1.414213562373095048801688724209698078569671875376948073176679737990732478462
    ≈1.732050807568877293527446341505872366942805253810380628055806979451933016909
    =2
    ≈2.236067977499789696409173668731276235440618359611525724270897245410520925638
    ≈2.449489742783178098197284074705891391965947480656670128432692567250960377457
    ≈2.645751311064590590501615753639260425710259183082450180368334459201068823230
    ≈2.828427124746190097603377448419396157139343750753896146353359475981464956924
    =3
    ≈3.162277660168379331998893544432718533719555139325216826857504852792594438639
    ≈3.316624790355399849114932736670686683927088545589353597058682146116484642609
    ≈3.464101615137754587054892683011744733885610507620761256111613958903866033818
    ≈3.605551275463989293119221267470495946251296573845246212710453056227166948293
    ≈3.741657386773941385583748732316549301756019807778726946303745467320035156307
    ≈3.872983346207416885179265399782399610832921705291590826587573766113483091937
    ≈4
    ≈4.123105625617660549821409855974077025147199225373620434398633573094954346338
    ≈4.242640687119285146405066172629094235709015626130844219530039213972197435386
    ≈4.358898943540673552236981983859615659137003925232444936890344138159557328203
    ≈4.472135954999579392818347337462552470881236719223051448541794490821041851276

    其中,有两数的根号可借由“口诀”记忆: (意思意思而已), (一妻三儿、一起散热)。

考点名称:随机事件

  • 随机事件:
    事件可分为确定事件和不确定事件,不确定事件又称为随机事件。
    在一定条件下,可能发生也可能不发生的事件。
    事件和概率的表示方法:一般地,事件用英文大写字母A,B,C,…,表示事件A的概率p,可记为P(A)=P。
    事件的概率:随机事件A的概率为0<P(A)<1。

  • 随机事件特点:
    1.可以在相同的条件下重复进行;
    2.每个试验的可能结果不止一个,并且能事先预测试验的所有可能结果;
    3.进行一次试验之前不能确定哪一个结果会出现。
    注意:
    ①随机事件发生与否,事先是不能确定的;
    ②必然事件发生的机会是1;不可能事件发生的机会是0;随机事件发生的机会在0-1之间。
    ③要判断一个事件是必然事件、随机事件、还是不可能事件,要从定义出发。

考点名称:相似多边形的性质

  • 相似多边形:
    如果两个边数相同的多边形的对应角相等,对应边成比例,这两个或多个多边形叫做相似多边形,相似多边形对应边的比叫做相似比。(或相似系数)
    判定:
    如果对应角相等,对应边成比例的多边形是相似多边形.
    如果所有对应边成比例,那么这两个多边形相似

  • 相似多边形的性质:
    相似多边形的性质定理1:相似多边形周长比等于相似比。
    相似多边形的性质定理2:相似多边形对应对角线的比等于相似比。
    相似多边形的性质定理3:相似多边形中的对应三角形相似,其相似比等于相似多边形的相似比。
    相似多边形的性质定理4:相似多边形面积的比等于相似比的平方。
    相似多边形的性质定理5:若相似比为1,则全等。
    相似多边形的性质定理6:相似三角形的对应线段(边、高、中线、角平分线)成比例。
    相似多边形的性质定理7:相似三角形的对应角相等,对应边成比例。
    相似多边形的性质定理主要根据它的定义:对应角相等,对应边成比例。

考点名称:投影

  • 投影的定义:
    一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面。
    投影包括平行投影和中心投影。
    平行投影:由平行光线(如太阳光线)形成的投影称为平行投影。
    中心投影:由同一点发出的光线所形成的投影称为中心投影。

  • 平行投影特征
    平行投影的投影线是平行的。
    ①等高的物体垂直于地面放置时,在太阳光下,他们的影子一样长;
    ②等长的物体平行于地面放置时,他们在太阳光下的影子一样长,且影长等于物体本身的长度;
    ③两个物体竖直在地面上,两个物体及它们各自的影子及光线构成的两个直角三角形相似,相似三角形对应边成比例。
    已知物体影子可以确定光线,同一时刻关线是平行的光线下行成的,过已知物体顶端及影子顶端作直线,过其他物体顶端作此线的平行线,便可求出同一时刻其他物体的影子。

    中心投影特征:
    中心投影的投影线交于一点。
    ①等高的物体垂直于地面放置时,在灯光下,离点光源近的物体的影子短;离点光源远的物体影子长。
    ②等长的物体平行于地面放置时,一般情况下,离点光源越近,影子长;离点光源越远,影子越短,但不会小于物体本身的长度。
    ③点光源、物体边缘的点以及它的影子上的对应点在同一条直线上,根据其中两个点,就可以求出第三点的位置。
    ④空间图形经过中心投影后,直线变成直线,但平行线可能变成了垂直相交的直线,
    中心投影后的图形与原图形相比虽然改变较多但直观性强,看起来与人的视觉效果一致。
    ⑤如果一个平面图形所在的平面与投射面平行,那么中心投影后得到的图形与原图形也是平行的,并且中心投影后得到的图形与原图形相似。

  • 技术提示:
    投影不是影,影是不透明的,只有轮廓,投影是透明的,也包括各面上的棱.投影图包括的棱,看到的用实线画,看不到的用虚线画.例如,三棱锥在水平面上的投影包括棱。

    平行投影与中心投影的区别与联系:

    区别 联系
    平行投影 平行投影下,同一时刻,所有物体的影子
    朝同一方向,且物体与影长之比皆相等。
    ①都随投影面的变化,影子发生变化;
    ②都可以根据物体与影子的对应点判定光线的来源与方向。
    中心投影 中心投影下,同一时刻,物体的影子方向及大小,
    跟它离点光源的位置及距离密切相关。