量化投资-MATLAB数据挖掘技术与实践

首页 > 图书 > 经济管理类图书/2020-06-08 / 加入收藏 / 阅读 [打印]
量化投资-MATLAB数据挖掘技术与实践

量化投资-MATLAB数据挖掘技术与实践

作者:卓金武

开 本:32开

书号ISBN:9787121302305

定价:98.0

出版时间:2017-01-01

出版社:电子工业出版社


6.3 FP-Growth算法 136
6.3.1 FP-Growth算法步骤 136
6.3.2 FP-Growth算法实例 137
6.3.3 FP-Growth算法的优缺点 139
6.4 应用实例:行业关联选股法 139
6.5 本章小结 141
参考文献 142
第7章 数据回归方法 143
7.1 一元回归 144
7.1.1 一元线性回归 144
7.1.2 一元非线性回归 148
7.1.3 一元多项式回归 153
7.2 多元回归 153
7.2.1 多元线性回归 153
7.2.2 多元多项式回归 157
7.3 逐步归回 160
7.3.1 逐步回归的基本思想 160
7.3.2 逐步回归步骤 161
7.3.3 逐步回归的MATLAB方法 162
7.4 Logistic回归 164
7.4.1 Logistic模型 164
7.4.2 Logistic回归实例 165
7.5 应用实例:多因子选股模型
的实现 168
7.5.1 多因子模型的基本思想 168
7.5.2 多因子模型的实现 169
7.6 本章小结 172
参考文献 172
第8章 分类方法 173
8.1 分类方法概要 173
8.1.1 分类的概念 173
8.1.2 分类的原理 174
8.1.3 常用的分类方法 175
8.2 K-近邻(KNN) 176
8.2.1 K-近邻原理 176
8.2.2 K-近邻实例 177
8.2.3 K-近邻特点 180
8.3 贝叶斯分类 181
8.3.1 贝叶斯分类原理 181
8.3.2 朴素贝叶斯分类原理 182
8.3.3 朴素贝叶斯分类实例 184
8.3.4 朴素贝叶斯特点 185
8.4 神经网络 185
8.4.1 神经网络的原理 185
8.4.2 神经网络的实例 188
8.4.3 神经网络的特点 188
8.5 逻辑斯蒂(Logistic) 189
8.5.1 逻辑斯蒂的原理 189
8.5.2 逻辑斯蒂的实例 189
8.5.3 逻辑斯蒂的特点 189
8.6 判别分析 190
8.6.1 判别分析的原理 190
8.6.2 判别分析的实例 191
8.6.3 判别分析的特点 191
8.7 支持向量机(SVM) 192
8.7.1 SVM的基本思想 192
8.7.2 理论基础 193
8.7.3 支持向量机的实例 196
8.7.4 支持向量机的特点 196
8.8 决策树 197
8.8.1 决策树的基本概念 197
8.8.2 决策树的建构的步骤 198
8.8.3 决策树的实例 201
8.8.4 决策树的特点 202
8.9 分类的评判 202
8.9.1 正确率 202
8.9.2 ROC曲线 204
8.10 应用实例:分类选股法 206
8.10.1 案例背景 206
8.10.2 实现方法 208
8.11 延伸阅读:其他分类方法 210
8.12 本章小结 211
参考文献 211
第9章 聚类方法 212
9.1 聚类方法概要 212
9.1.1 聚类的概念 212
9.1.2 类的度量方法 214
9.1.3 聚类方法的应用场景 216
9.1.4 聚类方法的分类 217
9.2 K-means方法 217
9.2.1 K-means的原理和步骤 218
9.2.2 K-means实例1:自主编程 219
9.2.3 K-means实例2:集成函数 221
9.2.4 K-means的特点 224
9.3 层次聚类 225
9.3.1 层次聚类的原理和步骤 225
9.3.2 层次聚类的实例 227
9.3.3 层次聚类的特点 229
9.4 神经网络聚类 229
9.4.1 神经网络聚类的原理和步骤 229
9.4.2 神经网络聚类的实例 229
9.4.3 神经网络聚类的特点 230
9.5 模糊C-均值(FCM)方法 230
9.5.1 FCM的原理和步骤 230
9.5.2 FCM的应用实例 232
9.5.3 FCM算法的特点 233
9.6 高斯混合聚类方法 233
9.6.1 高斯混合聚类的原理和步骤 233
9.6.2 高斯聚类的实例 236
9.6.3 高斯聚类的特点 236
9.7 类别数的确定方法 237
9.7.1 类别的原理 237
9.7.2 类别的实例 238
9.8 应用实例:股票聚类分池 240
9.8.1 聚类目标和数据描述 240
9.8.2 实现过程 240
9.8.3 结果及分析 242
9.9 延伸阅读 244
9.9.1 目前聚类分析研究的主要
内容 244
9.9.2 SOM智能聚类算法 245
9.10 本章小结 246
参考文献 246
第10章 预测方法 247
10.1 预测方法概要 247
10.1.1 预测的概念 247
10.1.2 预测的基本原理 248
10.1.3 量化投资中预测的主要
内容 249

10.1.4 预测的准确度评价及影响
因素 250
10.1.5 常用的预测方法 251
10.2 灰色预测 252
10.2.1 灰色预测原理 252
10.2.2 灰色预测的实例 254
10.3 马尔科夫预测 256
10.3.1 马尔科夫预测的原理 256
10.3.2 马尔科夫过程的特性 257
10.3.3 马尔科夫预测的实例 258
10.4 应用实例:大盘走势预测 262
10.4.1 数据的选取及模型的建立 263
10.4.2 预测过程 264
10.4.3 预测结果与分析 265
10.5 本章小结 265
参考文献 267
第11章 诊断方法 268
11.1 离群点诊断概要 268
11.1.1 离群点诊断的定义 268
11.1.2 离群点诊断的作用 269
11.1.3 离群点诊断方法分类 271
11.2 基于统计的离群点诊断 271
11.2.1 理论基础 271
11.2.2 应用实例 273
11.2.3 优点与缺点 275
11.3 基于距离的离群点诊断 275
11.3.1 理论基础 275

11.3.2 应用实例 276
11.3.3 优点与缺点 278
11.4 基于密度的离群点挖掘 278
11.4.1 理论基础 278
11.4.2 应用实例 279
11.4.3 优点与缺点 281
11.5 基于聚类的离群点挖掘 281
11.5.1 理论基础 281
11.5.2 应用实例 282
11.5.3 优点与缺点 284
11.6 应用实例:离群点诊断量化
择时 284
11.7 延伸阅读:新兴的离群点
挖掘方法 286
11.7.1 基于关联的离群点挖掘 286
11.7.2 基于粗糙集的离群点挖掘 286
11.7.3 基于人工神经网络的离群点
挖掘 287
11.8 本章小结 287
参考文献 288
第12章 时间序列方法 289
12.1 时间序列的基本概念 289
12.1.1 时间序列的定义 289
12.1.2 时间序列的组成因素 290

 2/3   首页 上一页 1 2 3 下一页 尾页

管理 金融/投资 投资融资

在线阅读

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐