高等数学-(上册)

首页 > 图书 > 教材教辅/2020-09-23 / 加入收藏 / 阅读 [打印]
高等数学-(上册)

高等数学-(上册)

作者:大学数学编写委员会《高等数学》编写组

开 本:16开

书号ISBN:9787030355300

定价:

出版时间:2012-09-01

出版社:科学出版社

高等数学-(上册) 内容简介

《高等数学(上册)》共8章,内容包括函数、极限与连续、导数与微分、微分中值定理与导数的应用、不定积分、定积分及其应用、常微分方程、MATLAB软件与一元函数微积分等。并将与课程内容相关的简单行列式计算、常见的几种曲线、积分表等作为附录。  《高等数学(上册)》每节配有习题,每章编有小结,书末附有习题答案与提示,以便读者预习和自学。

高等数学-(上册) 目录

目录
前言
第1章 函数、极限与连续 1
1.1 集合 1
1.1.1 集合的概念 1
1.1.2 集合之间的运算 2
1.1.3 区间和邻域 2
习题1.1 3
1.2 函数及其特性 3
1.2.1 映射 3
1.2.2 函数 4
1.2.3 函数的基本性质 7
习题1.2 9
1.3 反函数与复合函数 9
1.3.1 反函数 9
1.3.2 复合函数 10
习题1.3 11
1.4 初等函数 11
1.4.1 基本初等函数 11
1.4.2 初等函数 15
1.4.3 双曲函数和反双曲函数 15
习题1.4 16
1.5 数列极限 16
1.5.1 数列的基本概念 17
1.5.2 数列的极限 18
1.5.3 收敛数列的性质 20
习题1.5 21
1.6 函数的极限 22
1.6.1 当x→∞时函数f(x)的极限 22
1.6.2 当x→x0时函数f(x)的极限 23
1.6.3 函数极限的性质 25
习题1.6 25
1.7 两种特殊的量——无穷小量与无穷大量 26
1.7.1 无穷小量 26
1.7.2 无穷大量 26
1.7.3 无穷小量与无穷大量的关系 27
习题1.7 28
1.8 极限的运算法则 28
1.8.1 无穷小的运算法则 28
1.8.2 函数极限的四则运算法则 29
1.8.3 复合函数的极限运算法则 31
习题1.8 32
1.9极限存在准则与两个重要极限 32
1.9.1 极限的夹逼准则及应用 32
1.9.2 单调有界准则及应用 34
习题1.9 37
1.10无穷小的比较 38
1.10.1 无穷小比较的定义 38
1.10.2 无穷小的等价代换——简称等价代换 39
习题1.10 41
1.11 函数的连续与间断 41
1.11.1 函数在一点连续的概念 41
1.11.2 函数在区间上连续的概念 42
1.11.3 连续函数的运算性质及初等函数的连续性 43
1.11.4 函数的间断点及其分类 44
习题1.11 46
1.12闭区间上连续函数的性质 46
1.12.1 *大值、*小值定理 46
1.12.2 有界性定理 47
1.12.3 介值定理 47
1.12.4 致连续性 48
习题1.12 49
本章小结 49
一、内容概要 49
二、解题指导 49
复习题1 50
第2章 导数与微分 52
2.1 函数的瞬时变化率——导数的概念 52
2.1.1 概念引入 52
2.1.2 导数的定义 54
2.1.3 函数的可导性与连续性的关系 56
2.1.4 几个基本初等函数的导数公式的推导 57
习题2.1 58
2.2 导数的运算法则 59
2.2.1 导数的四则运算法则 59
2.2.2 反函数和复合函数的求导法则 61
2.2.3 导数基本公式表 65
习题2.2 66
2.3 高阶导数 67
2.3.1 高阶导数的概念 67
2.3.2 高阶导数的求导运算法则 69
习题2.3 70
2.4 隐函数以及由参数方程确定的函数的求导法 70
2.4.1 隐函数求导法 70
2.4.2 由参数方程确定的函数的求导法 74
2.4.3 相关变化率 77
习题2.4 78
2.5 函数的微分及其应用 79
2.5.1 微分的定义 79
2.5.2 可微与可导的关系 80
2.5.3 微分的几何意义 80
2.5.4 微分基本公式和运算法则 81
2.5.5 复合函数的微分微分的形式不变性 81
2.5.6 微分在近似计算中的应用 82
习题2.5 83
本章小结 84
一、内容概要 84
二、解题指导 84
二、数学史与人物介绍 84
复习题2 86
第3章 微分中值定理与导数的应用 88
3.1 微分中值定理 88
3.1.1 罗尔中值定理 88
3.1.2 拉格朗日中值定理 91
3.1.3 柯西中值定理 94
习题3.1 96
3.2 洛必达法则 97
3.2.1 型未定式的洛必达法则 97
3.2.2 型未定式的洛必达法则 99
3.2.3 其他类型的未定式 100
3.2.4 注意事项举例 101
习题3.2 102
3.3 泰勒公式 103
3.3.1 问题的提出 103
3.3.2 系数的选取 103
3.3.3 误差的确定 104
3.3.4 泰勒中值定理 105
习题3.3 109
3.4 函数性态的研究 109
3.4.1 函数的单调性 109
3.4.2 函数的极值 111
3.4.3 函数的*大(小)值 113
3.4.4 曲线的凹凸性及拐点 115
习题3.4 119
3.5 函数图形的描绘 121
3.5.1 曲线的渐近线 121
3.5.2 函数图形的描绘 121
习题3.5 123
3.6 平面曲线的曲率 124
3.6.1 弧微分 124
3.6.2 曲率及其计算公式 124
3.6.3 曲率同与曲率半径 127
习题3.6 128
3.7 方程的近似解 129
3.7.1 二分法 129
3.7.2 牛顿迭代法 130
习题3.7 133
本章小结 133
一、内容概要 133
一、解题指导 134
二、人物介绍 134
复习题3 137
第4章 不定积分 140
4.1 不定积分的概念 140
4.1.1 原函数与不定积分的概念 140
4.1.2 基本积分表 143
4.1.3 不定积分的性质 144
习题4.1 146
4.2 换元积分法 147
4.2.1 **类换元法 147
4.2.2 第二类换元法 153
习题4.2 157
4.3 分部积分法 159
习题4.3 162
4.4 有理函数积分法 163
4.4.1 有理函数的积分 163
4.4.2 可化为有理函数的积分 165
习题4.4 167
本章小结 168
一、内容概要 168
一、解题指导 168
复习题4 169
第5章 定积分 17l

 1/2    1 2 下一页 尾页

教材 研究生/本科/专科教材 工学

在线阅读

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐
上一篇:经济数学-(第二版)     下一篇:汽车电控技术