经典位势论及其对应的概率论

首页 > 图书 > 科技/2020-07-24 / 加入收藏 / 阅读 [打印]
经典位势论及其对应的概率论

经典位势论及其对应的概率论

作者:杜布

开 本:16开

书号ISBN:9787510058417

定价:129.0

出版时间:2013-07-01

出版社:世界图书出版公司


Introduction
Notation and Conventions
Part 1
Classical and Parabolic Potential Theory
Chapter I
Introduction to the Mathematical Background of Classical Potential Theory
1.The Context of Green's Identity
2.Function Averages
3.Harmonic Functions 
4.Maximum-Minimum Theorem for Harmonic Functions
5.The Fundamental Kernel for RN and Its Potentials
6.Gauss Integral Theorem
7.The Smoothness of Potentials ; The Poisson Equation
8.Harmonic Measure and the Riesz Decomposition
Chapter II
Basic Properties of Harmonic, Subharmonic, and Superharmonic Functions
1.The Green Function of a Ball; The Poisson Integral
2.Hamack's Inequality
3.Convergence of Directed Sets of Harmonic Functions
4.Harmonic, Subharmonic, and Superharmoruc Functions
5.Minimum Theorem for Superharmonic Functions
6.Application of the Operation TB
7.Characterization of Superharmonic Functions in Terms of Harmonic Functions
8.Differentiable Superharmonic Functions
9.Application of Jensen's Inequality
10.Superharmonic Funaions on an Annulus
II.Examples
12.The Kelvin Transformation
13.Greenian Sets
14.The L1(uB_) and D(uB_) Classes of Harmonic Functions on a Ball B; The
Riesz-Herglotz Theorem
15.The Fatou Boundary Limit Theorem
16.Minimal Harmonic Functions
Chapter III
Infima of Families of Superharmonic Functidns
1.Least Superharmonic Majorant (LM) and Greatest Subharmonic Minorant (GM) 
2.Generalization of Theorem I
3.Fundamental Convergence Theorem (Preliminary Version)
4.The Reduction Operation
5.Reduction Properties
6.A Smallness Property of Reductions on Compact Sets
7.The Natural (Pointwise) Order Decomposition for Positive Superharmonk
Functions 
Chapter 1V
Potentials on Special Open Sets
1.Special Open Sets, and Potentials on Them
2.Examples 
3.A Fundamental Smallness Property of Potentials 
4.Increasing Sequences of Potentials
5.Smoothing of a Potential
6.Uniqueness of the Measure Determining a Potential
7.Riesz Measure Associated with a Superharmonic Function
8.Riesz Decomposition Theorem
9.Counterpart for Superharmonic Functions on R2 ofthe Riesz
Decomposition
10.An Approximation Theorem
Chapter V
Polar Sets and Their Applications
1.Definition
2.Superharmonic Functions Associated with a Polar Set
3.Countable Unions of Polar Sets
4.Properties ofPolar Sets
5.Extension of a Superharmonic Function
6.Greenian Sets in IR2 as the Complements of Nonpolar Sets
7.Superharmonic Function Minimum Theorem (Extension of Theorem I1.5)
8.Evans-Vasilesco Theorem
9.Approximation of a Potential by Continuous Potentials
10.The Domination Principle

 2/3   首页 上一页 1 2 3 下一页 尾页

自然科学 数学 概率论与数理统计

在线阅读

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐