分析入门
分析入门作者:(美)雅培(Abbott,S.) 著 开 本:24开 书号ISBN:9787506292795 定价:39.0 出版时间:2008-10-01 出版社:世界图书出版公司 |
分析入门 内容简介
My primary goal in writing Understanding Analysis was to create an elementary one-semester book that exposes students to the rich rewards inherent in taking a mathematically rigorous approach to the study of functions of a real variable. The aim of a course in real analysis should be to challenge and improve mathematical intuition rather than to verify it. There is a tendency, however, to center an introductory course too closely around the familiar theorems of the standard calculus sequence. Producing a rigorous argument that polynomials are continuous is good evidence for a well-chosen definition of continuity, but it is not the reason the subject was created and certainly not the reason it should be required study. By shifting the focus to topics where an untrained intuition is severely disadvantaged (e.g., rearrangements of infinite series, nowhere-differentiable continuous functions, Fourier series), my intent is to restore an intellectual liveliness to this course by offering the beginning student access to some truly significant achievements of the subject.
分析入门 目录
Preface1 The Real Numbers
1.1 Discussion: The Irrationality of 1.414
1.2 Some Preliminaries
1.3 The Axiom of Completeness
1.4 Consequences of Completeness
1.5 Cantor's Theorem
1.6 Epilogue
2 Sequences and Series
2.1 Discussion: Rearrangements of Infinite Series
2.2 The Limit of a Sequence
2.3 The Algebraic and Order Limit Theorems
2.4 The Monotone Convergence Theorem and a First Look at Infinite Series
2.5 Subsequences and the Bolzano-Weierstrass Theorem
2.6 The Cauchy Criterion
2.7 Properties of Infinite Series
2.8 Double Summations and Products of Infinite Series
2.9 Epilogue
3 Basic Topology of R
3.1 Discussion: The Cantor Set
3.2 Open and Closed Sets
3.3 Compact Sets
3.4 Perfect Sets and Connected Sets
3.5 Baire's Theorem
3.6 Epilogue
4 Functional Limits and Continuity
4.1 Discussion: Examples of Dirichlet and Thomae
4.2 Functional Limits
4.3 Combinations of Continuous Functions
4.4 Continuous Functions on Compact Sets
4.5 The Intermediate Value Theorem
4.6 Sets of Discontinuity
4.7 Epilogue
5 The Derivative
5.1 Discussion: Are Derivatives Continuous?
5.2 Derivatives and the Intermediate Value Property
5.3 The Mean Value Theorem
5.4 A Continuous Nowhere-Differentiable FunCtion
5.5 Epilogue
6 Sequences and Series of Functions
6.1 Discussion: Branching Processes
6.2 Uniform Convergence of a Sequence of Functions
6.3 Uniform Convergence and Differentiation
6.4 Series of Functions
6.5 Power Series
6.6 Taylor Series
6.7 Epilogue
7 The Riemann Integral
7.1 Discussion: How Should Integration be Defined?
7.2 The Definition of the Riemann Integral
7.3 Integrating Functions with Discontinuities
7.4 Properties of the Integral
7.5 The Fundamental Theorem of Calculus
7.6 Lebesgue's Criterion for Riemann Integrability
7.7 Epilogue
8 Additional Topics
8.1 The Generalized Riemann Integral
8.2 Metric Spaces and the Baire Category Theorem
8.3 Fourier Series
8.4 A Construction of R From Q
Bibliography
Index
自然科学 数学 数学分析
在线阅读
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[高考] 2022 西安电子科技大学《软件工程》大作业答案 (2022-04-25) |
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |