国外很好数学著作原版系列拉马努金遗失笔记(第3卷)
国外很好数学著作原版系列拉马努金遗失笔记(第3卷)作者:(美)乔治·E.安德鲁斯、(美)布鲁斯· 开 本:其他 书号ISBN:9787560381381 定价:109.0 出版时间:2018-06-01 出版社:哈尔滨工业大学出版社 |
国外很好数学著作原版系列拉马努金遗失笔记(第3卷) 内容简介
拉马努金数学遗失笔记,包括了S. Ramanujan在1988年由Narosa出版的《Lost Notebook and Other Unpublished Papers》和其他未发表的论文中提出的所有主张。这本书包含了“遗失的笔记”,它是1976年春天由作者在剑桥三一学院图书馆发现的。其中还包含其他部分手稿、碎片和拉马努金1917年-1919年在疗养院写给G.H.哈迪的信件。这是五卷中的第三卷包含10章,集中在一些丢失的笔记和其他未发表的论文中很重要和很有影响的材料。中间是配分函数,有三章专门讨论了等级和分区的曲柄。此外,还对拉马努金手写稿上的划分和tau函数进行了研究。
国外很好数学著作原版系列拉马努金遗失笔记(第3卷) 目录
Introduction Ranks and Cranks, Part I 2.1 Introduction 9 2.2 Proof of Entry 2.1.1 2.3 Background for Entries 2.1.2 and 2.1.4 2.4 Proof of Entry 2.1.2 2.5 Proof of Entry 2.1.4 2.6 Proof of Entry 2.1.5 3 Ranks and Cranks, Part II 3.1 Introduction 32 Preliminary Results.…………… 3.3 The 2-Dissection for F(a) ............. 3.4 The 3-Dissection for F(q 3.5 The 5-Dissection for F(q) 3.6 The 7-Dissection for F(a 3.7 The 1l-Dissection for F(a 3.8 Conclusion 4 Ranks and Cranks. Part III 4.1 Introduction 4.2 Key Formulas on Page 59..'o3 4.3 Proofs of Entries 4.2.1 and 4.2.3 4.54 CongruencesFurtherEntriesfor theon PagesCoefficients58and An59 on Pages 179 and 180 74 4.6 Page 181: Partitions and Factorizations of Crank Coefficients. 82 4.7 Series on Pages 63 and 64 Related to Cranks 4.8 Ranks and Cranks: Ramanujan's Influence Continues..,..86 4.8.1 Congruences and Related Work 4.8.2 Asymptotics and Related Analysis 4.8.3 Combinatorics 4.8.4 Inequalities 4.8.5 Generalizations 5 Ramanujan,s Unpublished Manuscript on the Partition and Tau Functions 5.0 Congruences for T(n) 5.1 The Congruence p(5n 4)=0(mod 5) 5.2 Divisibility of r(n) by 5 53 The Congruence p(257 24)≡0(mod25)………97 5.4 Congruences Modulo 5k 5.5 Congruences Modulo 7 5.6 Congruences Modulo 7, Continued 5.7 Congruences Modulo 49 58 Congruences Modulo49, Continued..………104 5.9 The Congruence p(1ln 6)=0(mod 11) 5.10 Congruences Modulo11, Continued..……………107 11 Divisibility by 2 or 3 5.12 Divisibility of T(n) 13 Congruences Modulo 13..................................119 5.14 Congruences for p(n) Modulo 13 5.15 Congruences to Further Prime Moduli...........123 5.16 Congruences for p(n) Modulo 17, 19, 23, 29, or 31..........125 57 Divisibility of T(n)by23...……127 5. 18 The Congruence p(121n-5)=0(mod 121)................1295. 19 Divisibility of T(n)for Almost All Values of n 5.20 The Congruence p(5n 4)=0(mod 5), Revisited......1325.21 The Congruence p(25n 24)=0(mod 25), Revisited.........134 5.22 Congruences for p(n) Modulo Higher Powers of 5 5.23 Congruences for p(n) Modulo Higher Powers of 5, Continued. 136 5.24 The Congruence p(7n 5)=0(mod 7) 5.25 Commentary..,.…1 The Congruence p(5n 4)=0(mod 5) 5.2 Divisibility of T (n) by 5 5.4 Congruences Modulo 5 5.5 Congruences Modulo 7............ 56 Congruences Modulo7, Continued..……144 5.7 Congruences Modulo 49 58 Congruences Modulo49, Continued..……145 5.9 The Congruence p(117 6)≡0(mod11).………145 5.10 Congruences Modulo 11, Continued............146 11 Divisibility by 2 or 3 12 Divisibility of T(n) 5.13 Congruences Modulo 13 5.14 Congruences for p(n) Modulo 13 15 Congruences to Further Prime Moduli 5.16 Congruences for p(n) Modulo 17, 19, 23, 29, or 31 159 17 Divisibility of T(n) by 235.18 The Congruence p(12In-5)=0(mod 121) 5.19 Divisibility of T(n) for Almost All Values of n 177 5.20 The Congruence p(5n 4)=0(mod 5),Revisited 178 5.23 Congruences for p(n) Modulo Higher Powers of 5, Continued.179 5.24 The Congruence p(7n 5)=0(mod 7) 6 Theorems about the Partition Function on Pages 189 and 182 6.1 Introduction 6.2 The Identities for Modulus 5..............................183 6.3 The Identities for Modulus 7 6.4 Two Beautiful, False, but Correctable Claims of Ramanujan.193 6.5Page182. 6.6 Further Remarks 7 Congruences for Generalized Tau Functions on Page 178..205 7.1 Introduction 7.2 Proofs 8 Ramanujan's Forty Identities for the Rogers-Ramanujan Functions 8.1 Introduction 8.2 Definitions and Preliminary Results 8.3 The Forty Identities 8.4 The Principal Ideas Behind the Proofs 229 8.5 Proofs of the 40 Entries 243 8.6 Other Identities for G(a) and H(g and Final Remarks...333 9 Circular Summation 1 Introduction............ 9.2 Proof of Entry 9.1.1 9.3 Reformulations 9.4 Special Cases 10 Highly Composite Numbers Scratch Work Location Guide Provenance References 附录I拉马努金的中国知音:数学家刘治国的“西天取经”之旅附录II刘治国教授访谈 编辑手记
自然科学 数学 数学理论
在线阅读
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
零零教育社区:论坛热帖子
[高考] 2022 西安电子科技大学《软件工程》大作业答案 (2022-04-25) |
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |