芬斯勒几何中的比较定理与子流形
芬斯勒几何中的比较定理与子流形作者:吴炳烨 开 本:16开 书号ISBN:9787030434364 定价:66.0 出版时间:2015-03-01 出版社:科学出版社 |
芬斯勒几何中的比较定理与子流形 本书特色
芬斯勒几何就是没有二次型限制的黎曼几何。作为重要的几何不变量,体积在整体微分几何中扮演了关键的角色,它与微分流形的曲率与拓扑密切相关。必须指出的是,对于给定的黎曼度量,体积形式被唯一确定;但对确定的芬斯勒度量,有不同的体积形式可供选择。因此在芬斯勒几何的研究中选择合适的体积形显得十分重要。本书以体积形式为主线,介绍整体芬斯勒几何研究前沿的若干课题,并系统反映作者本人的研究成果。本书可作为数学专业研究生教材或教学参考书,也可供相关研究人员参考。
芬斯勒几何中的比较定理与子流形 内容简介
芬斯勒几何就是没有二次型限制的黎曼几何。作为重要的几何不变量,体积在整体微分几何中扮演了关键的角色,它与微分流形的曲率与拓扑密切相关。必须指出的是,对于给定的黎曼度量,体积形式被唯一确定;但对确定的芬斯勒度量,有不同的体积形式可供选择。因此在芬斯勒几何的研究中选择合适的体积形显得十分重要。吴炳烨著的《芬斯勒几何中的比较定理与子流形(英文版)》以体积形式为主线,介绍整体芬斯勒几何研究前沿的若干课题,并系统反映作者本人的研究成果。本书可作为数学专业研究生教材或教学参考书,也可供相关研究人员参考。
芬斯勒几何中的比较定理与子流形 目录
chapter 1 basics on finsler geometry1.1 minkowski space
1.1.1 definition and examples
1.1.2 legendre transformation
1.1.3 cartan tensor
1.2 finsler manifold
1.2.1 the definition of finsler manifold
1.2.2 connection and curvature
1.3 geodesic
1.3.1 geodesic and exponential map
1.3.2 the first variation of arc length
1.3.3 the second variation of arc length
1.4 jacobi fields and conjugate points
1.4.1 jacobi fields
1.4.2 conjugate points
1.5 basic index lemma
chapter 2 comparison theorems in finsler geometry
2.1 rauch comparison theorem
2.2 volume form
2.2.1 definition and examples
2.2.2 distortion and s-curvature
2.3 hessian comparison theorem and laplacian comparison theorem..
2.3.1 polar coordinates
2.3.2 hessian comparison theorem
2.3.3 laplacian comparison theorem
2.4 volume comparison theorems (i): pointwise curvature bounds
2.5 volume comparison theorems (ii): integral curvature bounds
2.6 volume comparison theorems (iii): tubular neighborhoods
2.6.1 fermi coordinates for minkowski space
2.6.2 jacobi fields with initial submanifolds
2.6.3 fermi coordinates and focal cut locus
2.6.4 volume comparison theorem for tubular neighborhoods of
submanifolds
2.7 comparison theorems with weighted curvature bounds
2.8 toponogov type comparison theorem
chapter 3 applications of comparison theorems
3.1 generalized myers theorem and linearly growth theorem of
volume
3.1.1 generalized myers theorem
3.1.2 linearly growth theorem of volume
3.2 mckean type inequalities for the first eigenvalue
3.2.1 the divergence lemma
3.2.2 the mckean type inequalities
3.3 gromov pre-compactness theorem
3.4 the first betti number
3.5 curvature and fundamental group
3.5.1 universal covering space and ~ndamental group
3.5.2 growth of fundamental group
3.5.3 finiteness of fundamental group
3.5.4 results related to milnor's conjecture
3.6 a lower bound of injectivity radius
3.7 finite topological type
chapter 4 geometry of finsler submanifolds
4.1 mean curvature
4.1.1 projection in a minkowski space
4.1.2 the mean curvature for finsler submanifolds
4.2 some results on submanifolds in minkowski space
4.3 volume growth of submanifolds in minkowski space
4.4 rigidity of minimal surfaces in randers-minkowski 3-space
4.4.1 the mean curvature of a graph in (rn+1,fb)
4.4.2 the rigidity results
bibliography
index
自然科学 数学 几何与拓扑
在线阅读
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:布朗运动的启示
下一篇:强场激光物理研究前沿
零零教育社区:论坛热帖子
[高考] 2022 西安电子科技大学《软件工程》大作业答案 (2022-04-25) |
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |