李代数和代数群

首页 > 图书 > 人文社科类图书/2020-06-21 / 加入收藏 / 阅读 [打印]
李代数和代数群

李代数和代数群

作者:陶威尔

开 本:24开

书号ISBN:9787510070228

定价:99.0

出版时间:2014-03-01

出版社:世界图书出版公司

李代数和代数群 本书特色

陶威尔编著的《李代数和代数群》内容介绍: the theory of groups and lie algebras is interesting for many reasons. in the mathematical viewpoint, it employs at the same time algebra, analysis and geometry. on the other hand, it intervenes in other areas of science, in particular in different branches of physics and chemistry. it is an active domain of current research. one of the difficulties that graduate students or mathematicians interested in the theory come across, is the fact that the theory has very much advanced,and consequently, they need to read a vast amount of books and articles before they could tackle interesting problems.

李代数和代数群 目录

1 results on topological spaces
 1.1 irreducible sets and spaces
 1.2 dimension
 1.3 noetherian spaces
 1.4 constructible sets
 1.5 gluing topological spaces
2 rings and modules
 2.1 ideals
 2.2 prime and maximal ideals
 2.3 rings of fractions and localization
 2.4 localizations of modules
 2.5 radical of an ideal
 2.6 local rings
 2.7 noetherian rings and modules
 2.8 derivations
 2.9 module of differentials
3 integral extensions
 3.1 integral dependence
 3.2 integrally closed domains
 3.3 extensions of prime ideals
4 factorial rings
 4.1 generalities
 4.2 unique factorization
 4.3 principal ideal domains and euclidean domains
 4.4 polynomials and factorial rings
 4.5 symmetric polynomials
 4.6 resultant and discriminant
 field extensions
 5.1 extensions
 5.2 algebraic and transcendental elements
 5.3 algebraic extensions
 5.4 transcendence basis
 5.5 norm and trace
 5.6 theorem of the primitive element
 5.7 going down theorem
 5.8 fields and derivations
 5.9 conductor
 finitely generated algebras
 6.1 dimension
 6.2 noether's normalization theorem
 6.3 krull's principal ideal theorem
 6.4 maximal ideals
 6.5 zariski topology
7  gradings and filtrations
 7.1 graded rings and graded modules
 7.2 graded submodules
 7.3 applications
 7.4 filtrations
 7.5 grading associated to a filtration
 inductive limits
 8.1 generalities
 8.2 inductive systems of maps
 8.3 inductive systems of magmas, groups and rings
 8.4 an example
 8.5 inductive systems of algebras
 sheaves of functions
 9.1 sheaves
 9.2 morphisms
 9.3 sheaf associated to a presheaf
 9.4 gluing
  9.5 ringed space
10 jordan decomposition and some basic results on groups
  10.1 jordan decomposition
  10.2 generalities on groups
  10.3 commutators
  10.4 solvable groups
  10.5 nilpotent groups
 10.6 group actions
 10.7 generalities on representations
 10.8 examples
11 algebraic sets
 11.1 affine algebraic sets
 11.2 zariski topology
 11.3 regular functions
 11.4 morphisms
 11.5 examples of morphisms
 11.6 abstract algebraic sets
 11.7 principal open subsets
 11.8 products of algebraic sets
12 prevarieties and varieties
 12.1 structure sheaf
 12.2 algebraic prevarieties
 12.3 morphisms of prevarieties
 12.4 products of prevarieties
 12.5 algebraic varieties
 12.6 gluing
 12.7 rational functions
 12.8 local rings of a variety
13 projective varieties
 13.1 projective spaces
 13.2 projective spaces and varieties
 13.3 cones and projective varieties
 13.4 complete varieties
 13.5 products
 13.6 grassmannian variety
14 dimension
 14.1 dimension of varieties
 14.2 dimension and the number of equations .
 14.3 system of parameters
 14.4 counterexamples
15 morphisms and dimenion
 15.1 criterion of affineness
 15.2 afiine morphisms
 15.3 finite morphisms
 15.4 factorization and applications
 15.5 dimension of fibres of a morphism
 15.6 an example
16 tangent spaces

 1/3    1 2 3 下一页 尾页

自然科学 数学 代数数论组合理论

在线阅读

 1/3    1 2 3 下一页 尾页
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐