李代数和代数群

首页 > 图书 > 人文社科类图书/2020-06-21 / 加入收藏 / 阅读 [打印]
李代数和代数群

李代数和代数群

作者:陶威尔

开 本:24开

书号ISBN:9787510070228

定价:99.0

出版时间:2014-03-01

出版社:世界图书出版公司


 16.1 a first approach
 16.2 zariski tangent space
 16.3 differential of a morphism
 16.4 some lemmas
 16.5 smooth points
17 normal varieties
 17.1 normal varieties
 17.2 normalization
 17.3 products of normal varieties
 17.4 properties of normal varieties
18 root systems
 18.1 reflections
 18.2 root systems
 18.3 root systems and bilinear forms
 18.4 passage to the field of real numbers
 18.5 relations between two roots
 18.6 examples of root systems
 18.7 base of a root system
 18.8 weyl chambers
 18.9 highest root
 18.10 closed subsets of roots
 18.11 weights
 18.12 graphs
 18.13 dynkin diagrams
 18.14 classification of root systems
19 lie algebras
 19.1 generalities on lie algebras
 19.2 representations
 19.3 nilpotent lie algebras
 19.4 solvable lie algebras
 19.5 radical and the largest nilpotent ideal
 19.6 nilpotent radical
 19.7 regular linear forms
 19.8 caftan subalgebras
20 semisimple and reductive lie algebras
 20.1 semisimple lie algebras
 20.2 examples
 20.3 semisimplicity of representations
 20.4 semisimple and nilpotent elements
 20.5 reductive lie algebras
 20.6 results on the structure of semisimple lie algebras
 20.7 subalgebras of semisimple lie algebras
 20.8 parabolic subalgebras
21 algebraic groups
 21.1 generalities
 21.2 subgroups and morphisms
 21.3 connectedness
 21.4 actions of an algebraic group
 21.5 modules
 21.6 group closure
22 ailine algebraic groups
 22.1 translations of functions
 22.2 jordan decomposition
 22.3 unipotent groups
 22.4 characters and weights
 22.5 tori and diagonalizable groups
 22.6 groups of dimension one
23 lie algebra of an algebraic group
 23.1 an associative algebra
 23.2 lie algebras
 23.3 examples
 23.4 computing differentials
 23.5 adjoint representation
 23.6 jordan decomposition
24 correspondence between groups and lie algebras
 24.1 notations
 24.2 an algebraic subgroup
 24.3 invariants
 24.4 functorial properties
 24.5 algebraic lie subalgebras
 24.6 a particular case
 24.7 examples
 24.8 algebraic adjoint group
25 homogeneous spaces and quotients
 25.1 homogeneous spaces
 25.2 some remarks
 25.3 geometric quotients
 25.4 quotient by a subgroup
 25.5 the case of finite groups
26 solvable groups
 26.1 conjugacy classes
 26.2 actions of diagonalizable groups
 26.3 fixed points
 26.4 properties of solvable groups
 26.5 structure of solvable groups
27 reductive groups
 27.1 radical and unipotent radical
 27.2 semisimple and reductive groups
 27.3 representations
 27.4 finiteness properties
 27.5 algebraic quotients
 27.6 characters
28 borel subgroups, parabolic subgroups, cartan subgroups
 28.1 borel subgroups
 28.2 theorems of density
 28.3 centralizers and tori
 28.4 properties of parabolic subgroups
 28.5 cartan subgroups
29 cartan subalgebras, borel subalgebras and parabolic
 subalgebras
 29.1 generalities
 29.2 cartan subalgebras
 29.3 applications to semisimple lie algebras
 29.4 borel subalgebras
 29.5 properties of parabolic subalgebras
 29.6 more on reductive lie algebras
 29.7 other applications
 29.8 maximal subalgebras
30 representations of semisimple lie algebras
  30.1 enveloping algebra
  30.2 weights and primitive elements
  30.3 finite-dimensional modules
  30.4 verma modules
  30.5 results on existence and uniqueness
  30.6 a property of the weyl group
31 symmetric invariants
  31.1 invariants of finite groups
  31.2 invariant polynomial functions
  31.3 a free module
32 s-triples
 32.1 jacobson-morosov theorem
 32.2 some lemmas
 32.3 conjugation of s-triples
 32.4 characteristic
 32.5 regular and principal elements
33 polarizations
 33.1 definition of polarizations
 33.2 polarizations in the semisimple case
 33.3 a non-polarizable element
 33.4 polarizable elements
 33.5 richardson's theorem
34 results on orbits
 34.1 notations
 34.2 some lemmas
 34.3 generalities on orbits
 34.4 minimal nilpotent orbit
 34.5 subregular nilpotent orbit
 34.6 dimension of nilpotent orbits
 34.7 prehomogeneous spaces of parabolic type
35 centralizers
 35.1 distinguished elements
 35.2 distinguished parabolic subalgebras
 35.3 double centralizers
 35.4 normalizers
 35.5 a semisimple lie subalgebra
 35.6 centralizers and regular elements

 2/3   首页 上一页 1 2 3 下一页 尾页

自然科学 数学 代数数论组合理论

在线阅读

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐