李代数和代数群
李代数和代数群作者:陶威尔 开 本:24开 书号ISBN:9787510070228 定价:99.0 出版时间:2014-03-01 出版社:世界图书出版公司 |
16.1 a first approach
16.2 zariski tangent space
16.3 differential of a morphism
16.4 some lemmas
16.5 smooth points
17 normal varieties
17.1 normal varieties
17.2 normalization
17.3 products of normal varieties
17.4 properties of normal varieties
18 root systems
18.1 reflections
18.2 root systems
18.3 root systems and bilinear forms
18.4 passage to the field of real numbers
18.5 relations between two roots
18.6 examples of root systems
18.7 base of a root system
18.8 weyl chambers
18.9 highest root
18.10 closed subsets of roots
18.11 weights
18.12 graphs
18.13 dynkin diagrams
18.14 classification of root systems
19 lie algebras
19.1 generalities on lie algebras
19.2 representations
19.3 nilpotent lie algebras
19.4 solvable lie algebras
19.5 radical and the largest nilpotent ideal
19.6 nilpotent radical
19.7 regular linear forms
19.8 caftan subalgebras
20 semisimple and reductive lie algebras
20.1 semisimple lie algebras
20.2 examples
20.3 semisimplicity of representations
20.4 semisimple and nilpotent elements
20.5 reductive lie algebras
20.6 results on the structure of semisimple lie algebras
20.7 subalgebras of semisimple lie algebras
20.8 parabolic subalgebras
21 algebraic groups
21.1 generalities
21.2 subgroups and morphisms
21.3 connectedness
21.4 actions of an algebraic group
21.5 modules
21.6 group closure
22 ailine algebraic groups
22.1 translations of functions
22.2 jordan decomposition
22.3 unipotent groups
22.4 characters and weights
22.5 tori and diagonalizable groups
22.6 groups of dimension one
23 lie algebra of an algebraic group
23.1 an associative algebra
23.2 lie algebras
23.3 examples
23.4 computing differentials
23.5 adjoint representation
23.6 jordan decomposition
24 correspondence between groups and lie algebras
24.1 notations
24.2 an algebraic subgroup
24.3 invariants
24.4 functorial properties
24.5 algebraic lie subalgebras
24.6 a particular case
24.7 examples
24.8 algebraic adjoint group
25 homogeneous spaces and quotients
25.1 homogeneous spaces
25.2 some remarks
25.3 geometric quotients
25.4 quotient by a subgroup
25.5 the case of finite groups
26 solvable groups
26.1 conjugacy classes
26.2 actions of diagonalizable groups
26.3 fixed points
26.4 properties of solvable groups
26.5 structure of solvable groups
27 reductive groups
27.1 radical and unipotent radical
27.2 semisimple and reductive groups
27.3 representations
27.4 finiteness properties
27.5 algebraic quotients
27.6 characters
28 borel subgroups, parabolic subgroups, cartan subgroups
28.1 borel subgroups
28.2 theorems of density
28.3 centralizers and tori
28.4 properties of parabolic subgroups
28.5 cartan subgroups
29 cartan subalgebras, borel subalgebras and parabolic
subalgebras
29.1 generalities
29.2 cartan subalgebras
29.3 applications to semisimple lie algebras
29.4 borel subalgebras
29.5 properties of parabolic subalgebras
29.6 more on reductive lie algebras
29.7 other applications
29.8 maximal subalgebras
30 representations of semisimple lie algebras
30.1 enveloping algebra
30.2 weights and primitive elements
30.3 finite-dimensional modules
30.4 verma modules
30.5 results on existence and uniqueness
30.6 a property of the weyl group
31 symmetric invariants
31.1 invariants of finite groups
31.2 invariant polynomial functions
31.3 a free module
32 s-triples
32.1 jacobson-morosov theorem
32.2 some lemmas
32.3 conjugation of s-triples
32.4 characteristic
32.5 regular and principal elements
33 polarizations
33.1 definition of polarizations
33.2 polarizations in the semisimple case
33.3 a non-polarizable element
33.4 polarizable elements
33.5 richardson's theorem
34 results on orbits
34.1 notations
34.2 some lemmas
34.3 generalities on orbits
34.4 minimal nilpotent orbit
34.5 subregular nilpotent orbit
34.6 dimension of nilpotent orbits
34.7 prehomogeneous spaces of parabolic type
35 centralizers
35.1 distinguished elements
35.2 distinguished parabolic subalgebras
35.3 double centralizers
35.4 normalizers
35.5 a semisimple lie subalgebra
35.6 centralizers and regular elements
自然科学 数学 代数数论组合理论
在线阅读
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:图像分析中的模型和逆问题
下一篇:多元微积分教程
零零教育社区:论坛热帖子
[高考] 2022 西安电子科技大学《软件工程》大作业答案 (2022-04-25) |
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |