清代三角学的数理化历程
清代三角学的数理化历程作者:特古斯 开 本:16开 书号ISBN:9787030422286 定价:79.0 出版时间:2014-11-01 出版社:科学出版社 |
清代三角学的数理化历程 本书特色
古代的数学知识未能独立于天文学, **次传入的三角知识同样依附于天文 学。中西数学会通使三角学独立于天文学, 物理概念进化为几何概念。第二次传入的 三角学独立于几何学,由于无法中学为体, 数学会通不大顺利。晚清学者的“三角函 数”有名无实,全盘西化之前,函数概念 并未真正建立起来。《清代三角学的数理化历程》讲述清代三角学 的数理化历程,涉及古代的有关知识及其 发展变化,两次传入的三角知识与会通结 果,通过引用新材料与新方法,得出古代 的弧矢概念实质上是物理的,相应的结果 则是近似的。《清代三角学的数理化历程》根据古代原著,区分物 理、几何、算术与分析的概念,说明了清 代三角学的结构与变迀,由此引出一些新 观点。
清代三角学的数理化历程 内容简介
《清代三角学的数理化历程》适于数学史工作者、科技史专业 的高校师生及广大数学爱好者参考阅读。
清代三角学的数理化历程 目录
序(李文林)引言
**章 古代的知识传统
**节 有关概念
一、勾股术
二、割圆术
三、弧矢术
第二节 基本方法
一、数值分析
二、等积变换
三、形式级数
第三节 推理形式
一、数学论证
二、论证形式
三、论证结果
第四节 结构特点
一、立法之根
二、递归关系
三、近似关系
第二章 独立于天文学的结果
**节 割圆八线
一、基本关系
二、和较关系
三、边角关系
第二节 割圆缀术
一、割圆连比例
二、明安图变换
三、无穷的算术
第三节 割圆密率
一、弦矢互求关系
二、八线互求关系
三、八线与弧背的关系
第四节 弧三角术
一、弧三角概念
二、正弧三角术
三、斜弧三角术
第三章 独立于几何学的结果
**节 三角比例数
一、基本关系
二、和较关系
三、边角关系
第二节 三角数理
一、棣美弗之例
二、指数之式
三、各理设题
第三节 三角级数
一、比例数的互求关系
二、尤拉之法与反函数
三、某些三角级数的和
第四节 弧三角术
一、基本概念
二、纳氏之法
三、各理设题
第四章 中西会通的结果
**节 中体西用
一、《弧三角图解》
二、《割圆术辑要》
三、《新三角问题正解》
第二节 教育改革
一、技术压力
二、社会条件
三、文化背景
四、数学教育
第三节 全盘西化
一、《平面三角法》
二、《三角术》
三、结构变化
结语
参考文献
后记
自然科学 数学 几何与拓扑
在线阅读
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:实用迭代分析
下一篇:2013-数学所讲座
零零教育社区:论坛热帖子
[高考] 2022 西安电子科技大学《软件工程》大作业答案 (2022-04-25) |
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |