五张卡片,上面分别写着:0、1、7、5、8.从中取出三张拼成一个三位数,使这个三位数可以被3整除,一共可拼成______个这样的三位数.-数学

题文

五张卡片,上面分别写着:0、1、7、5、8.从中取出三张拼成一个三位数,使这个三位数可以被3整除,一共可拼成______个这样的三位数.
题型:填空题  难度:中档

答案

要使各位数之和被3整除,可选出:
①O、1、5,
②O、1、8,
③0、5、7,
④0、7、8;
每组可以组成4个三位数,如O、1、5,可组成105,150,501,510.
所以共可组成4×4=16个被3整除的三位数.
故答案为:16.

据专家权威分析,试题“五张卡片,上面分别写着:0、1、7、5、8.从中取出三张拼成一个三位..”主要考查你对  2、3、5的倍数及其特征,排列与组合  等考点的理解。关于这些考点的“档案”如下:

2、3、5的倍数及其特征排列与组合

考点名称:2、3、5的倍数及其特征

  • 2的倍数的特征:个位上的数字是0,2,4,6,8。 
    5的倍数的特征:个位上的数字是0或5。
    3的倍数的特征:各个数位上的数字之和能被3整除。
    9的倍数的特征:各个数位上的数字之和能被9整除。

考点名称:排列与组合

  • 排列组合:
    所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。
    组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。
    排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。

  • 解决排列、组合问题的基本原理:
    是分类计数原理与分步计数原理。
    分类计数原理(也称加法原理):
    指完成一件事有很多种方法,各种方法相互独立,但用其中任何一种方法都可以做完这件事。
    那么各种不同的方法数加起来,其和就是完成这件事的方法总数。
    如从甲地到乙地,乘火车有3种走法,乘汽车有2种走法,每一种走法都可以从甲地到乙地,所以共有3+2=5种不同的走法。
    分步计数原理(也称乘法原理):
    指完成一件事,需要分成多个步骤,每个步骤中又有多种方法,各个步骤中的方法相互依存,只有各个步骤都完成才算做完这件事。
    那么,每个步骤中的方法数相乘,其积就是完成这件事的方法总数。
    如从甲地经过丙地到乙地,先有3条路可到丙地,再有2路可到乙地,所以共有3×2=6种不同的走法。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐