只列式(或方程)不计算.(1)明明家这个月交了240元水电费,比上个月节约了60元,节约了百分之几?______.(2)飞机的速度是每小时860千米,比火车速度的8倍少20千米.求火车的速度-数学

首页 > 考试 > 数学 > 小学数学 > 列方程解决问题/2019-04-10 / 加入收藏 / 阅读 [打印]

题文

只列式(或方程)不计算.
(1)明明家这个月交了240元水电费,比上个月节约了60元,节约了百分之几?______.
(2)飞机的速度是每小时860千米,比火车速度的8倍少20千米.求火车的速度.______.
(3)明明过生日时请好朋友们吃饭,买了4瓶橙汁,每瓶0.75升,每杯可倒
3
10
升,这些橙汁可倒多少杯?______.
(4)蜗牛5分钟爬行了41厘米,照这样的速度,蜗牛爬行了61.5厘米要多少分钟?______.
题型:解答题  难度:中档

答案

(1)60÷(60+240);
(2)设火车的速度为每小时x千米,
    8x-20=860;
(3)4×0.75÷
3
10

(4)设蜗牛爬行了61.5厘米要x分钟,
   
41
5
=
61.5
x

据专家权威分析,试题“只列式(或方程)不计算.(1)明明家这个月交了240元水电费,比上个月..”主要考查你对  列方程解决问题,百分数的计算,百分数的应用题,解比例,比例的应用题,整数,小数,分数,百分数和比例的复合应用题  等考点的理解。关于这些考点的“档案”如下:

列方程解决问题百分数的计算,百分数的应用题解比例,比例的应用题整数,小数,分数,百分数和比例的复合应用题

考点名称:列方程解决问题

  • 列方程解决问题:
    未知数用字母表示,参加列式。根据题意找出数量间的相等关系,列出含有未知数的等式,也就是方程。
    它的优势体现在可以使未知数直接参加运算。

  • 列方程解决问题一般步骤:
    ①审题,弄清题意:即全面分析已知数与已知数、已知数与未知数的关系。特别要把牵涉到的一些概念术语弄清,如同向,相向,增加到,增加了等。
    ②引进未知数:用x表示所求的数量或有关的未知量。在小学阶段所遇到的应用题并不十分复杂,一般只需要直接把要求的数量设为未知数。
    ③找出应用题中数量间的相等关系,列出方程。
    ④解方程,找出未知数的值。
    ⑤检验并写出答案:检验时,
    一是要将所求得的未知数的值代太原方程,检验方程的解是否正确;
    二是检查所求得的未知数的值是否符合题意,不符合题意的要舍去,保留符合题意的解。

考点名称:百分数的计算,百分数的应用题

  • 常见的百分数的计算方法:

  • 百分数应用题关系式:
    利息的计算公式:利息=本金×利率×时间。 
    百分率:例:发芽率=发芽种子数÷试验种子数×100%
    利率=利息÷本金×100%
    折数=现价÷原价
    成数=实际收成÷计划收成
    税率=应纳税额÷总收入×100%
    利润=售出价-成本,利润率=利润÷成本×100%=(售出价÷成本-1)×100%
    折扣=实际售价÷原售价×100%(折扣<1)
    浓度问题:
    溶质的重量+溶剂的重量=溶液的重量; 
    溶质的重量÷溶液的重量×100%=浓度; 
    溶液的重量×浓度=溶质的重量; 
    溶质的重量÷浓度=溶液的重量。

考点名称:解比例,比例的应用题

  • 解比例:
    求比例中的未知项,叫做解比例。
    根据比例的基本性质(即交叉相乘),如果已知比例中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例。解比例是利用比例的基本性质:在比例中,两个外项的积等于两个内项的积。再转化成方程。

    比例应用题:
    是小学六年级奥数中的一个重要内容。它既是整数应用题的继续与深化,又是学习更多数学知识的重要基础,同时,这类题又有着自身的特点和解题的规律。在处理几个量的倍比关系时,比例应用题与分数百分数应用题间有很多相似之处,但利用比例处理问题要方便灵活得多。 
    要解决好此类问题,须注意灵活运用画线段示意图等手段,多角度、多侧面思考问题。在解题过程中,要善于掌握对应、假设、转化等多种解题方法,在寻找正确的解题方法的同时,不断地开拓解题思路。

  • 用比例方法解应用题的一般步骤:

考点名称:整数,小数,分数,百分数和比例的复合应用题

  • 含有小数、分数、百分数、比例中任意两种或两种以上的数的运算应用题。
    复合应用题:
    是由两个或两个以上相互联系的简单应用题组合而成的。
    在这种应用题中有两个或两个以上相互关联的数量关系,而且所求问题需要的条件没有直接给出。
    这就要根据相互关联的数量关系找出已知数量和未知数量的联系,先解答一个或几个中间问题,也就是把它先分解成几个简单应用题,然后再根据它们的联系依次列式并求解。