有99个大于1的自然数,它们的和为300,如果把其中9个数各减去2,其余90个数各加1,那么所得的99个数的乘积是奇数还是偶数?请说明理由.-数学

首页 > 考试 > 数学 > 小学数学 > 奇数,偶数/2019-08-12 / 加入收藏 / 阅读 [打印]

题文

有99个大于1的自然数,它们的和为300,如果把其中9个数各减去2,其余90个数各加1,那么所得的99个数的乘积是奇数还是偶数?请说明理由.
题型:解答题  难度:中档

答案

99个数的总和:300-9×2+90×1=372为偶数.则这99个数中至少有一个偶数,否则这99个数全部是奇数,其和必为奇数,与和为偶数产生矛盾.
因此,所得的99个数的乘积必为偶数.

据专家权威分析,试题“有99个大于1的自然数,它们的和为300,如果把其中9个数各减去2,..”主要考查你对  奇数,偶数  等考点的理解。关于这些考点的“档案”如下:

奇数,偶数

考点名称:奇数,偶数

  • 奇数、偶数:
    在自然数中,能被2整除的数,叫做偶数;不能被2整除的数是奇数。

  • 奇数偶数性质:
    偶数±偶数=偶数    奇数±奇数=偶数 
    偶数±奇数=奇数    奇数×奇数=奇数 
    偶数×偶数=偶数      奇数×偶数=偶数
    0是一个特殊的偶数:
    它既是正偶数与负偶数的分界线,又是正奇数与负奇数的分水岭。

  •  

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐