一个直角三角形的两个锐角的度数成反比例。[]-六年级数学

首页 > 考试 > 数学 > 小学数学 > 三角形的分类/2019-04-04 / 加入收藏 / 阅读 [打印]

题文

一个直角三角形的两个锐角的度数成反比例。  

[     ]

题型:判断题  难度:偏易

答案

错误

据专家权威分析,试题“一个直角三角形的两个锐角的度数成反比例。[]-六年级数学-”主要考查你对  三角形的分类,正比例的意义,反比例的意义  等考点的理解。关于这些考点的“档案”如下:

三角形的分类正比例的意义,反比例的意义

考点名称:三角形的分类

  • 学习目标:
    探究掌握三角形的分类标准及方法,体会每类三角形特征,并能够识别直角三角形、锐角三角形、钝角三角形,等腰三角形和等边三角形。

  • 按角分:
    1、锐角三角形:三个角都是锐角

    2、直角三角形:有一个角是直角,两个锐角

    3、钝角三角形:有一个钝角,两个锐角

    特别提醒:每个三角形都至少有两个锐角。

    按边分:
    1、等腰三角形:2条边相等

    2、等边三角形:3条边都相等

    3、不等边三角形:3条边都不相等

考点名称:正比例的意义,反比例的意义

  • 正比例:
    两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系,正比例的图像是一条直线;
    用字母表示为如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系可以用以下关系式表示:=k(一定);
    正比例关系两种相关联的量的变化规律:同时扩大,同时缩小,比值不变.正比例和反比例

    反比例:
    两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系;
    如果用字母x和y表示两种相关联的量,用k表示它们的积,反比例关系可以用下面关系式表示:xy=k(一定)。

  • 反比例的意义:
    成反比例的量包括三个数量,一个定量和两个变量。研究两个变量之间的扩大(或缩小)的变化关系。一种量发生变化,引起另一种量发生相反的变化。这两种量是反比例的量,它们的关系成反比例关系。
    成反比例的量:
    前提:两种相关的量(乘法关系)
    要求:一个量变化,另一个量也随着变化,并且,这两个量中相对应的两个数的乘积一定。
    结论:这两个量就叫做反比例的量,它们的关系叫做反比例关系。

  • 正比例和反比例关系:
    相同点:
    ①正比例和反比例都含有三个数量,在这三个数量中,均有一个定量、两个变量。
    ②在正、反比例的两个变量中,均是一个量变化,另一个量也随之变化。并且变化方式均属于扩大(乘以一个数)或缩小(除以一个数)若干倍的变化。
    不同点:
    ①正比例的定量是两个变量中相对应的两个数的比值。反比例的定量是两个变量中相对应的两个数的积。
    ②正比例的图像时上升直线;反比例是曲线。
    ③公式不同:正比例是(=k(一定)),反比例是(xy=k(一定))。
    ④规律不同:正比例是一个数缩小,另一个数也缩小,一个数扩大,另一个数也扩大;反比例是一个数缩小,另一个数就扩大,一个数扩大另一个数就缩小。 

  • 判断两种量成正比例、反比例或不成比例的方法:
    (1)找出两种相关联的量。
    (2)根据两种相关联的量之间的关系列出数量关系式。
    (3)如果两种量中相对应的两个数的比值(也就是商)一定,就是成正比例的量;若积一定,就是反比例的量。