如图中,以直线为轴旋转,可以得出圆柱体的是(),得出圆锥体的是()A.B.C.D.-数学

题文

如图中,以直线为轴旋转,可以得出圆柱体的是(  ),得出圆锥体的是(  )
题型:多选题  难度:偏易

答案

如图中,以直线为轴旋转,可以得出圆柱体的是长方形或正方形,得出圆锥体的是直角三角形.
故选:B,C.

据专家权威分析,试题“如图中,以直线为轴旋转,可以得出圆柱体的是(),得出圆锥体的是..”主要考查你对  图形与变换(平移和旋转),圆柱,圆锥,球体  等考点的理解。关于这些考点的“档案”如下:

图形与变换(平移和旋转)圆柱,圆锥,球体

考点名称:图形与变换(平移和旋转)

  • 平移:
    指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。平移不改变物体的形状和大小。平移可以不是水平的。

    旋转:
    在平面内,把一个图形绕某一点旋转一个角度的图形变换叫做旋转,这个点叫做旋转中心,旋转的角叫做旋转角,如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点。

  • 数一数:



考点名称:圆柱,圆锥,球体

  • 圆柱:
    以矩形的一边所在直线为旋转轴,其余三边旋转360°形成的面所围成的旋转体叫作圆柱。
    圆柱的两个完全相同的圆面叫做底面(又分上底和下底);圆柱有一个曲面,叫做侧面;两个底面的对应点之间的距离叫做高(高有无数条)。
    圆锥:
    圆锥面和一个截它的平面(满足交线为圆)组成的空间几何图形叫圆锥。
    圆锥的高:圆锥的顶点到圆锥的底面圆心之间的距离叫做圆锥的高;
    圆锥的母线:圆锥的侧面展开形成的扇形的半径、底面圆周上点到顶点的距离。
    圆锥的侧面积:将圆锥的侧面沿母线展开,是一个扇形,这个扇形的弧长等于圆锥底面的周长,而扇形的半径等于圆锥的母线的长。
    圆锥的侧面积就是弧长为圆锥底面的周长×母线/2;没展开时是一个曲面。
    圆柱和圆锥是由平面和曲面共同围成的立体图形;圆柱有无数条高,圆锥只有一条高。
    球体:
    空间中到定点的距离小于或等于定长的所有点组成的图形叫做球,如图上图所示的图形为球体。
    球体是一个连续曲面的立体图形,由球面围成的几何体称为球体。世界上没有绝对的球体。绝对的球体只存在于理论中。
    球的表面是一个曲面,这个曲面就叫做球面。
    球和圆类似,也有一个中心叫做球心。

  • 特征:
    圆柱:
    1、圆柱的底面都是圆,并且大小一样。
    2、圆柱有三个面,上、下两个平面叫做底面,它们是完全相同的两个圆。另一曲面叫做侧面。
    3、圆柱两个面之间距离叫做高,把圆柱的侧面打开,得到一个长方形,这个长方形的长就是圆柱的底周长
    圆锥:
    1、圆锥有一个底面、一个侧面、一个顶点、一条高、无数条母线,且底面展开图为一圆形侧面展开图是扇形。
    2、圆锥侧面展开是一个扇形,已知扇形面积为二分之一rl。所以圆锥侧面积为二分之一母线长×弧长(即底面周长)。
    3、另外,母线长等于底面圆直径的圆锥,展开的扇形就是半圆。所有圆锥展开的扇形角度等于(底面直径÷母线)×180度。
    球体:
    1 球心和截面圆心的连线垂直于截面。
    2 球心到截面的距离d与球的半径R及截面的半径r有下面的关系:r2=R2-d2
    球面被经过球心的平面截得的圆叫做大圆,被不经过球心的截面截得的圆叫做小圆。
    在球面上,两点之间的最短连线的长度,就是经过这两点的大圆在这两点间的一段劣弧的长度,我们把这个弧长叫做两点的球面距离。

  •  

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐