有一个自然数,用它分别去除63,90,130都有余数,3个余数的和是25.这3个余数中最大的一个是多少?-数学

首页 > 考试 > 数学 > 小学数学 > 有余数的除法/2019-02-24 / 加入收藏 / 阅读 [打印]

题文

有一个自然数,用它分别去除63,90,130都有余数,3个余数的和是25.这3个余数中最大的一个是多少?
题型:解答题  难度:中档

答案

设这个自然数为m,m去除63,90,130所得的余数分别为a,b,c,
则63-a,90-b,130-c都是m的倍数.可得:
(63-a)+(90-b)+(130-c)=283-(a+b+c)=283-25=258也是m的倍数.
又258=2×3×43.则可能是2或3或6或43;
a+b+c=25,故a,b,c中至少有一个要大于8;
根据除数 必须大于余数,可以确定=43.
从而a=20,b=4,c=1.显然,20是三个余数中最大的.
答:这3个余数中最大的一个是20.

据专家权威分析,试题“有一个自然数,用它分别去除63,90,130都有余数,3个余数的和是..”主要考查你对  有余数的除法  等考点的理解。关于这些考点的“档案”如下:

有余数的除法

考点名称:有余数的除法

  • 有余数的除法竖式:

  • 思路点拨:
    1、有余数的除法中,余数比除数小。

    2、被除数÷除数=商……余数
          被除数=商×除数+余数
          除数=(被除数-余数)÷商
          商=(被除数-余数)÷除数

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐