在平面上有过同一点P,并且半径相等的n个圆,其中任何两个圆都有两个交点,任何三个圆除P点外无其他公共点,那么试问:(1)这n个圆把平面划分成多少个平面区域?(2)这n个圆共有-数学

首页 > 考试 > 数学 > 小学数学 > 找规律/2019-02-09 / 加入收藏 / 阅读 [打印]

题文

在平面上有过同一点P,并且半径相等的n个圆,其中任何两个圆都有两个交点,任何三个圆除P点外无其他公共点,那么试问:
(1)这n个圆把平面划分成多少个平面区域?
(2)这n个圆共有多少个交点?
题型:解答题  难度:中档

答案

(1)由分析的表易知
S2-S1=2,
S3-S2=3,
S4-S3=4,
S5-S4=5,

由此,不难推测:Sn-Sn-1=n.
把上面(n-1)个等式左、右两边分别相加,就得到:Sn-S1=2+3+4+…+n,
因为S1=2,所以Sn=2+2+3+4+…+n=1+(1+2+3+4+…+n)=1+
n(n+1)
2
=
n2+n+2
2

答:n个圆过P点时,可把平面划分成
n2+n+2
2
个平面区域;

(2)由表容易发现
a1=1,
a2-a1=1,
a3-a2=2,
a4-a3=3,
a5-a4=4,

an-1-an-2=n-2,
an-an-1=n-1.
n个式子相加an=1+(1+2+3+4+…+n-1)=1+
n(n-1)
2
=
n2-n+2
2

答:这n个圆共有
n2-n+2
2
个交点.

据专家权威分析,试题“在平面上有过同一点P,并且半径相等的n个圆,其中任何两个圆都有..”主要考查你对  找规律  等考点的理解。关于这些考点的“档案”如下:

找规律

考点名称:找规律

  • 学习目标:
    1、通过观察、实验、猜测、推理等活动发现图形的排列规律。
    2、培养初步的观察、推理能力。

  • 知识点拨:
    在日常生活中,我们经常会碰到许多按一定顺序排列的数(或图形)。只要我们从不同的角度去分析研究,善于观察、分析、总结,就能发现规律,找到解决问题的方法。
    找规律填数关键是根据已知的数找出数与数之间的规律。看相邻两数的倍数关系、差是常用的观察方法。
    寻找数列的规律,通常从两个方面来考虑:
    (1)寻找各项与项数间的关系;
    (2)考虑相邻项之间的关系,然后,再总结出一般的规律。