在比例尺是1:6000000的地图上,量得甲、乙两地的距离是18厘米。一辆汽车以54千米/小时的速度从甲地开往乙地,需要几小时到达乙地?-六年级数学

题文

在比例尺是1:6000000的地图上,量得甲、乙两地的距离是18厘米。一辆汽车以54千米/小时的速度从甲地开往乙地,需要几小时到达乙地?
题型:解答题  难度:中档

答案

甲、乙两地的实际距离:18×6000000=108000000(厘米)=1080(千米),1080÷54=20(小时)

据专家权威分析,试题“在比例尺是1:6000000的地图上,量得甲、乙两地的距离是18厘米。一..”主要考查你对  整数的四则混合运算及应用题,比例尺  等考点的理解。关于这些考点的“档案”如下:

整数的四则混合运算及应用题比例尺

考点名称:整数的四则混合运算及应用题

  • 加、减、乘、除四种运算统称四则运算。
    加法的意义:把两个(或几个)数合并成一个数的运算叫做加法。

    减法的意义:已知两个加数的和与其中的一个加数求另一个加数的运算叫做减法。减法中,已知的两个加数的和叫做被减数,其中一个加数叫做减数,求出的另一个加数叫差。

    乘法的意义:一个数乘以整数,是求几个相同加数的和的简便运算,或是求这个数的几倍是多少。

    除法的意义:已知两个因数的积与其中一个因数求另一个因数的运算叫做除法。在除法中,已知的两个因数的积叫做被除数,其中一个因数叫做除数,求出的另一个因数叫商。

    四则运算分为二级,加减法叫做第一级运算,乘除法叫做第二级运算。

  • 方法点拨:
    运算的顺序:在一个没有括号的算式里,如果只含有同一级运算,要从左往右依次计算;如果含有两级运算,要先算第二级运算,再算第一级运算。在有括号的算式里,要先算括号里的,再算括号外的。

考点名称:比例尺

  • 比例尺:
    表示图上距离比实地距离缩小的程度,因此也叫缩尺。图上距离和实际距离的比,叫做这幅图的比例尺。
    即:图上距离:实际距离=比例尺; =比例尺

  • 比例尺分类:
    比例尺一般分为数值比例尺和线段比例尺:
    (1)数值比例尺:例如一幅图的比例尺是1:20000或。为了方便,通常把比例尺写成前项(或后项)是1的比。
    (2)线段比例尺是在图上附上一条标有数量的线段,用来表示实际相对应的距离。

    比例尺表示方法
    用公式表示为:比例尺=。比例尺通常有三种表示方法。
    ①数字式,用数字的比例式或分数式表示比例尺的大小。例如地图上1厘米代表实地距离500千米,可写成:1∶50,000,000或写成:1/50,000,000。
    ②线段式,在地图上画一条线段,并注明地图上1厘米所代表的实际距离。
    ③文字式,在地图上用文字直接写出地图上1厘米代表实地距离多少千米,如:图上1厘米相当于地面距离500千米,或五千万分之一。
    三种表示方法可以互换。必须化单位。
    在绘制地图和其他平面图的时候,需要把实际距离按一定的比缩小(或扩大),再画在图纸上。
    这时,就要确定图上距离和相对应的实际距离的比。

  • 比例尺公式:
    图上距离=实际距离×比例尺 
    实际距离=图上距离÷比例尺 
    比例尺=图上距离÷实际距离

    单位换算:
    在比例尺计算中要注意单位间的换算:1公里=1千米=1×1000米=1×100000厘米
    图上用厘米,实地用千米,厘米换千米,去五个零;
    千米换厘米,在千的基础上再加两个零。

    计算方法:
    ①如果将原比例尺放大到n倍;那么原比例×n。
    ②如果将原比例尺放大n倍;那么原比例×(n+1)。
    ③如果将原比例尺缩小到1/n;那么原比例×1/n。
    ④如果将原比例尺缩小1/n;那么原比例×(1-1/n)。
    ⑤比例尺缩放后,原面积之比会变为缩放倍数的平方。