A,B,C三辆汽车以相同的速度同时从甲市开往乙市.开车后1小时A车出了事故,B和C两车照常前进.A车停了半小时后以原来速度的4/5继续前进.B,C两车行至距离甲市200千米处B车出了-数学

题文

A,B,C三辆汽车以相同的速度同时从甲市开往乙市.开车后1小时A车出了事故,B和C两车照常前进.A车停了半小时后以原来速度的4/5继续前进.B,C两车行至距离甲市200千米处B车出了事故,C车照常前进.B车停了半小时后也以原来速度的4/5继续前进.结果到达乙市的时间C车比B车早1小时,B车比A车早1小时,甲、乙两市的距离为______千米.
题型:解答题  难度:中档

答案

半小时=0.5小时
B车不停留,只会比C车晚半小时,从200千米处到乙地,C车用:
0.5÷(
5
4
-1)
=0.5÷
1
4

=2(小时)
如果A车不停留,只会比C车晚1.5小时;
从A车出故障处到乙地,C车用了:
1.5÷(
5
4
-1)
=1.5÷
1
4

=6(小时)
所以C车从出发到200千米处用时:
1+6-2=5(小时)
200÷5=40(千米/时)
40×(1+6)
=40×7
=280(千米)
答:甲、乙两地的距离280千米.
故答案为:280.

据专家权威分析,试题“A,B,C三辆汽车以相同的速度同时从甲市开往乙市.开车后1小时A车..”主要考查你对  整数,小数,分数,百分数和比例的复合应用题  等考点的理解。关于这些考点的“档案”如下:

整数,小数,分数,百分数和比例的复合应用题

考点名称:整数,小数,分数,百分数和比例的复合应用题

  • 含有小数、分数、百分数、比例中任意两种或两种以上的数的运算应用题。
    复合应用题:
    是由两个或两个以上相互联系的简单应用题组合而成的。
    在这种应用题中有两个或两个以上相互关联的数量关系,而且所求问题需要的条件没有直接给出。
    这就要根据相互关联的数量关系找出已知数量和未知数量的联系,先解答一个或几个中间问题,也就是把它先分解成几个简单应用题,然后再根据它们的联系依次列式并求解。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐