今有10个质数:17,23,31,41,53,67,79,83,101,103.如果将它们分成两组,每组五个数,并且每组的五个数之和相等,那么把含有101的这组数从小到大排列,第二个数应是__-数学

题文

今有10个质数:17,23,31,41,53,67,79,83,101,103.如果将它们分成两组,每组五个数,并且每组的五个数之和相等,那么把含有101的这组数从小到大排列,第二个数应是______.
题型:填空题  难度:中档

答案

这10个质数之和是598,分成两组后,每组五个数之和是598÷2=299.
在有79这组数中,其他四个质数之和是299-79=220,个位数是0,因此这四个质数的个位数可能有三种情形:
(1)三个1和一个7;
(2)二个3和二个7;
(3)三个3和一个1.
31+41+101=173,220-173=47,可这十个数中没有47,情形(1)被否定.
17+67=84,220-84=136,个位数为3有23,53,83,只有53+83=136,因此从情形(2)得到一种分组:17,53,67,79,83和23,31,41,101,103.
所以,含有101这组数中,从小到大排列第二个数是31.
[注]从题目本身的要求来说,只要找出一种分组就可以了,但从情形(3)还可以得出另一种分组.23+53+83+103=262,262-220=42,我们能否从53,83,103中找出一个数,用比它少42的数来代替呢?
53-42=11,83-42=41,103-42=61.这十个数中没有11和61,只有41.又得到另一种分组:
23,41,53,79,103和17,31,67,83,101.
由此可见,不论哪一种分组,含101这组数中,从小到大排列,第二个数都是31.

据专家权威分析,试题“今有10个质数:17,23,31,41,53,67,79,83,101,103.如果将..”主要考查你对  质数,互质数,分解质因数,合数  等考点的理解。关于这些考点的“档案”如下:

质数,互质数,分解质因数,合数

考点名称:质数,互质数,分解质因数,合数

  • 一个数只有1和它本身两个约数,这样的数叫做质数。 
    一个数除了1和它本身,还有别的约数,这样的数叫合数。 
    1既不是质数也不是合数。
    公约数只有1的两个数叫做互质数。
    每个合数都可以写成几个质数相乘的形式,这几个质数就叫做这个合数的质因数。
    把一个合数用几个质因数相乘的形式表示出来,叫做分解质因数。通常用短除法分解质因数。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐