用长20cm、宽8cm的瓷砖贴一块正方形墙面,如果这块正方形墙面刚好由完整的这样的瓷砖贴成,这块正方形墙面边长最小是多少厘米?需要几块这样的瓷砖才能贴成?-数学

题文

用长20cm、宽8cm的瓷砖贴一块正方形墙面,如果这块正方形墙面刚好由完整的这样的瓷砖贴成,这块正方形墙面边长最小是多少厘米?需要几块这样的瓷砖才能贴成?
题型:解答题  难度:中档

答案

(1)20=2×2×5,
8=2×2×2,
所以20和8的最小公倍数是2×2×5×2=40,
即这块正方形墙面边长最小是40厘米;

(2)墙面的面积:40×40=1600(平方厘米),
瓷砖的面积:20×8=160(平方厘米),
贴墙需要的瓷砖:1600÷160=10(块),
答:这块正方形墙面边长最小是40厘米;需要10块这样的瓷砖才能贴成.

据专家权威分析,试题“用长20cm、宽8cm的瓷砖贴一块正方形墙面,如果这块正方形墙面刚好..”主要考查你对  最大公因数(最大公约数),最小公倍数  等考点的理解。关于这些考点的“档案”如下:

最大公因数(最大公约数),最小公倍数

考点名称:最大公因数(最大公约数),最小公倍数

  • 最大公因数(最大公约数):
    任何两个自然数都有公因数1,(除零以外)公因数中(几个)最大的称为最大公因数;
    最小公倍数:
    在两个或两个以上的自然数中,如果他们有相同的倍数,这些倍数中,最小的称为这些整数的最大公倍数。

  • 最大公约数的求法:
    (1)用分解质因数的方法,把公有的质因数相乘。
    (2)用短除法的形式求两个数的最大公约数。
    (3)特殊情况:如果两个数互质,它们的最大公约数是1。
    如果两个数中较小的数是较大的数的约数,那么较小的数就是这两个数的最大公约数。

    最小公倍数的方法:
    (1)用分解质因数的方法,把这两个数公有的质因数和各自独有的质因数相乘。
    (2)用短除法的形式求。
    (3)特殊情况:如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。
    如果两个数中较大的数是较小的数的倍数,那么较大的数就是这两个数的最小公倍数。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐