三角形的三边长a、b、c均为整数,且a、b、c的最小公倍数为60,a、b的最大公约数为4,b、c的最大公约数为3,那么a?b?c的最小值为______.-数学

题文

三角形的三边长a、b、c均为整数,且a、b、c的最小公倍数为60,a、b的最大公约数为4,b、c的最大公约数为3,那么a?b?c的最小值为______.
题型:填空题  难度:中档

答案

a+b+c的最小值,则可以得出:
1.b不是5的倍数,b=12,
2.设c为5的倍数,则c=15,a=4时,a+b+c=31,
3.a为5的倍数,则a=20,c=5此时a>b+c,不满足三角形的定理,舍去,
答:a+b+c最小为31,
故答案为:31.

据专家权威分析,试题“三角形的三边长a、b、c均为整数,且a、b、c的最小公倍数为60,a、..”主要考查你对  最大公因数(最大公约数),最小公倍数  等考点的理解。关于这些考点的“档案”如下:

最大公因数(最大公约数),最小公倍数

考点名称:最大公因数(最大公约数),最小公倍数

  • 最大公因数(最大公约数):
    任何两个自然数都有公因数1,(除零以外)公因数中(几个)最大的称为最大公因数;
    最小公倍数:
    在两个或两个以上的自然数中,如果他们有相同的倍数,这些倍数中,最小的称为这些整数的最大公倍数。

  • 最大公约数的求法:
    (1)用分解质因数的方法,把公有的质因数相乘。
    (2)用短除法的形式求两个数的最大公约数。
    (3)特殊情况:如果两个数互质,它们的最大公约数是1。
    如果两个数中较小的数是较大的数的约数,那么较小的数就是这两个数的最大公约数。

    最小公倍数的方法:
    (1)用分解质因数的方法,把这两个数公有的质因数和各自独有的质因数相乘。
    (2)用短除法的形式求。
    (3)特殊情况:如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。
    如果两个数中较大的数是较小的数的倍数,那么较大的数就是这两个数的最小公倍数。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐