试证明:形如111111+9×10n(n为自然数)的正整数必为合数.-数学

题文

试证明:形如111111+9×10n(n为自然数)的正整数必为合数.
题型:解答题  难度:中档

答案

证明:∵111111=3×37037,9×10n=3×3×10n
∴111111+9×10n=3×(37037+3×10n),
∴3|111111+9×10n(n为自然数),
∴形如111111+9×10n(n为自然数)的正整数必为合数.

据专家权威分析,试题“试证明:形如111111+9×10n(n为自然数)的正整数必为合数.-数学-魔方..”主要考查你对  有理数定义及分类  等考点的理解。关于这些考点的“档案”如下:

有理数定义及分类

考点名称:有理数定义及分类

  • 有理数的定义:
    有理数是整数和分数的统称,一切有理数都可以化成分数的形式。

  • 有理数的分类:
    (1)按有理数的定义:
                                  正整数 
                     整数{     零 
                                  负整数
    有理数{     
                                正分数 
                    分数{
                                负分数
     

    (2)按有理数的性质分类: 
                               正整数  
                   正数{ 
                               正分数
    有理数{  零
                               负整数 
                   负数{
                               负分数