写出都是合数的13个连续自然数.-数学

题文

写出都是合数的13个连续自然数.
题型:解答题  难度:中档

答案

方法一:直接寻找.
从2开始,在自然数2,3,4,5,6,…中把质数全部划去,若划去的两个质数之间的自然数个数不小于13个,则从中取13个连续的自然数,就是符合要求的一组解,
例如:自然数114,115,116,…,126就是符合题意的一组解;

方法二:构造法.
我们知道,若一个自然数a是2的倍数,则a+2也是2的倍数,若是3的倍数,则a+3也是3的倍数,…,若a是14的倍数,则a+14也是14的倍数,
所以只要取a为2,3,…,14的倍数,则a+2,a+3,…,a+14分别为2,3,…,14的倍数,从而它们是13个连续的自然.
所以,取a=2×3×4×…×14,则a+2,a+3,…,a+14必为13个都是合数的连续的自然数.

据专家权威分析,试题“写出都是合数的13个连续自然数.-数学-”主要考查你对  有理数定义及分类,有理数除法  等考点的理解。关于这些考点的“档案”如下:

有理数定义及分类有理数除法

考点名称:有理数定义及分类

  • 有理数的定义:
    有理数是整数和分数的统称,一切有理数都可以化成分数的形式。

  • 有理数的分类:
    (1)按有理数的定义:
                                  正整数 
                     整数{     零 
                                  负整数
    有理数{     
                                正分数 
                    分数{
                                负分数
     

    (2)按有理数的性质分类: 
                               正整数  
                   正数{ 
                               正分数
    有理数{  零
                               负整数 
                   负数{
                               负分数

考点名称:有理数除法

  • 有理数除法定义:
    已知两个因数的积与其中一个因数,求另一个因数的运算叫做有理数的除法。

  • 有理数的除法法则:
    (1)除以一个数,等于乘上这个数的倒数;
    (2)两个数相除,同号得正,异号得负,并把绝对值相除;
    (3)0除以任何一个不等于0的数都等于0。

  • 有理数除法注意:
    ①0不能做除数;
    ②有理数的除法和乘法是互逆运算;
    ③在做除法运算时,根据同号得正,异号的负的法则先确定符号,在把绝对值相除,若在算式中有带分数,一般化成假分数进行计算,若不能整除,则除法运算都转化为乘法运算。