若三个不同的质数m,n,p满足m+n=p,则mnp的最小值是______.-数学

题文

若三个不同的质数m,n,p满足m+n=p,则mnp的最小值是 ______.
题型:填空题  难度:中档

答案

∵m、n、p是三个不同的质数,质数中除2是偶数外其余都是奇数,
而m+n=p,
∴m、n有一个为2,
又使mnp的值最小,
∴m=2、n=3、p=5
或 m=3、n=2、p=5,
∴mnp=30.
故答案为:30.

据专家权威分析,试题“若三个不同的质数m,n,p满足m+n=p,则mnp的最小值是______.-数学..”主要考查你对  有理数定义及分类  等考点的理解。关于这些考点的“档案”如下:

有理数定义及分类

考点名称:有理数定义及分类

  • 有理数的定义:
    有理数是整数和分数的统称,一切有理数都可以化成分数的形式。

  • 有理数的分类:
    (1)按有理数的定义:
                                  正整数 
                     整数{     零 
                                  负整数
    有理数{     
                                正分数 
                    分数{
                                负分数
     

    (2)按有理数的性质分类: 
                               正整数  
                   正数{ 
                               正分数
    有理数{  零
                               负整数 
                   负数{
                               负分数

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐