满足等式xy+yx-2003y-2003x+2003xy=2003的正整数对的个数是()A.1B.2C.3D.4-数学

  • 有理数的分类:
    (1)按有理数的定义:
                                  正整数 
                     整数{     零 
                                  负整数
    有理数{     
                                正分数 
                    分数{
                                负分数
     

    (2)按有理数的性质分类: 
                               正整数  
                   正数{ 
                               正分数
    有理数{  零
                               负整数 
                   负数{
                               负分数

  • 考点名称:二次根式的加减乘除混合运算,二次根式的化简

    • 二次根式的加减乘除混合运算:
      顺序与师叔运算的顺序一样,先乘方,后乘除,最后算加减,有括号的先算括号内的。
      ①在运算过程中,多项式乘法,乘法公式和有理数(式)中的运算律在二次根式的运算中仍然适用。
      ②二次根式的加减乘除混合运算过程中,每个根式可以看作是一个“单项式”,多个不同类的二次根式的和可以看作“多项式”。
      ③运算结果是根式的,一般应表示为最简二次根式。
      二次根式的化简:
      先对分子、分母因式分解,能约分的就约分,能开方的就开方,或先对被开方数进行通分,然后再通过分母有理化进行化简。

    • 二次根式混合运算掌握:
      1、确定运算顺序。
      2、灵活运用运算定律。
      3、正确使用乘法公式。
      4、大多数分母有理化要及时。
      5、在有些简便运算中也许可以约分,不要盲目有理化。
      6、字母运算时注意隐含条件和末尾括号的注明。
      7、提公因式时可以考虑提带根号的公因式。

      二次根式化简方法:
      二次根式的化简是初中阶段考试必考的内容,初中竞赛的题目中也常常会考察这一内容。
      分母有理化:
      分母有理化即将分母从非有理数转化为有理数的过程,以下列出分母有理化的几种方法:
      (1)直接利用二次根式的运算法则:
      例:
      (2)利用平方差公式:
      例:
      (3)利用因式分解:
      例:(此题可运用待定系数法便于分子的分解)

      换元法(整体代入法):
      换元法即把根式中的某一部分用另一个字母代替的方法,是化简的重要方法之一。
      例:在根式中,令,即可得到
      原式=√(u2+9-6u)+√(u2+25-10u)=√(u-3)2+√(u-5)2=2u-8=2√(x+2)-8

      提公因式法:
      例:计算


      巧构常值代入法:
      例:已知x2-3x+1=0,求的值。
      分析:已知形如ax2+bx+c=0(x≠0)的条件,所求式子中含有的项,可先将ax2+bx+c=0化为x+=,即先构造一个常数,再代入求值。
      解:显然x≠0,x2-3x+1=0化为x+=3。
      原式==2.