若a1,a2,…,an是1,2,…,n的任意一个排列(n是奇数),则(a1-1)(a2-2)…(an-n)是偶数.-数学

题文

若a1,a2,…,an是1,2,…,n的任意一个排列(n是奇数),则(a1-1)(a2-2)…(an-n)是偶数.
题型:解答题  难度:中档

答案

证明:∵a1,a2,…,an是1,2,…,n的任意一个排列(n是奇数),
∴a1+a2+…+an=1+2+…+n,
∴(a1-1)+(a2-2)+…+(an-n)=0是偶数,
∴(a1-1),(a2-2),…,(an-n)中必至少有一个是偶数,
∴(a1-1)(a2-2)…(an-n)是偶数,
即证之.

据专家权威分析,试题“若a1,a2,…,an是1,2,…,n的任意一个排列(n是奇数),则(a1-1)..”主要考查你对  有理数定义及分类  等考点的理解。关于这些考点的“档案”如下:

有理数定义及分类

考点名称:有理数定义及分类

  • 有理数的定义:
    有理数是整数和分数的统称,一切有理数都可以化成分数的形式。

  • 有理数的分类:
    (1)按有理数的定义:
                                  正整数 
                     整数{     零 
                                  负整数
    有理数{     
                                正分数 
                    分数{
                                负分数
     

    (2)按有理数的性质分类: 
                               正整数  
                   正数{ 
                               正分数
    有理数{  零
                               负整数 
                   负数{
                               负分数

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐