给出如下n个平方数:12,22,…,n2,规定可以在其中的每个数前任意添上“+”号或“-”号,所得的代数和记为L.(1)当n=8时,试设计一种可行方案使得|L|最小;(2)当n=2005时,试设计-数学

题文

给出如下n个平方数:12,22,…,n2,规定可以在其中的每个数前任意添上“+”号或“-”号,所得的代数和记为L.
(1)当n=8时,试设计一种可行方案使得|L|最小;
(2)当n=2005时,试设计一种可行方案使得|L|最小.
题型:解答题  难度:中档

答案

(1)当L=12-22-32+42-52+62+72-82=0
或L=-12+22+32-42+52-62-72+82=0时,|L|最小且最小值为0;
(2)当n=2005时,
①∵给定的2005个数中有1003个奇数,
∴不管如何添置“+”和“-”号,其代数和总为奇数,
∴所求的最终代数和大于等于1.
于是我们寻求最终代数和等于1的可行方案.
②∵k2-(k+1)2-(k+2)2+(k+3)3=4,-k2+(k+1)2+(k+2)2-(k+3)3=-4,
∴对于8个连续正整数的平方数总可以使得它们的代数和为0;
③若对62,72,…,20052,根据①每连续8个一组适当添加“+”和“-”号,使每组的代数和为0,然后对12,22,…,52进而设计,但无论如何设计,均无法使它们的代数和为1.
④在对12,22,…,52的设计过程中,有一种方案:-12+22-32+42-52=-15,
又由①知4个连续正整数的平方数总可以使得它们的代数和为4,
∴16个连续正整数的平方数总可以使得它们的代数和为16.
综上,可行方案为:
首先对222,232,…,20052,根据①每连续8个一组适当添加“+”和“-”号,使每组的代数和为0;其次对62,72,…,212,根据③适当添加“+”和“-”号,使每组的代数和为16;最后对12,22,…,52作-12+22-32+42-52=-15设置,便可以使得给定的2005个数的代数和为1,即|L|最小.

据专家权威分析,试题“给出如下n个平方数:12,22,…,n2,规定可以在其中的每个数前任意..”主要考查你对  有理数定义及分类  等考点的理解。关于这些考点的“档案”如下:

有理数定义及分类

考点名称:有理数定义及分类

  • 有理数的定义:
    有理数是整数和分数的统称,一切有理数都可以化成分数的形式。

  • 有理数的分类:
    (1)按有理数的定义:
                                  正整数 
                     整数{     零 
                                  负整数
    有理数{     
                                正分数 
                    分数{
                                负分数
     

    (2)按有理数的性质分类: 
                               正整数  
                   正数{ 
                               正分数
    有理数{  零
                               负整数 
                   负数{
                               负分数

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐