(1)将l,2,…,2004这2004个数随意排成一行,得到一个数N.求证:N一定是合数;(2)若n是大于2的正整数,求证:2n-1与2n+1中至多有一个是质数.-数学

题文

(1)将l,2,…,2004这2004个数随意排成一行,得到一个数N.求证:N一定是合数;
(2)若n是大于2的正整数,求证:2n-1与2n+1中至多有一个是质数.
题型:解答题  难度:中档

答案

(1)从1到999来看这999个数,不管怎么排列,都可以把百位十位和各位的数,按照九个九个的分组,个位上1到9,分到一组,十位上1到9分到一组,百位上1到9分一组,都是刚好分成九个一组的,每组加起来都是45,再有4+5=9,这999个数的各位数字的和能被9整除.
同理,从1000到1999,我们不看千位上的1,百位以后和上面分析的一样,每个数的每一位加起来最终能被9整除.但是这里千位上多了1000个1,再看2000到2004这5个数,这5个数有5个2,然后从0到4有5个数,我们可以不看0.于是2+2+2+2+2+1+2+3+4=20,加上1000到1999千位上的一千个1,就是1020,这个数可以也被3整除.
也就是说,1到2004,所有数字随便排在一起,每个位子上的数加起来的总和可以被3整除,即含有3这个因数,故N一定是合数;
(2)假设2n-1与2n+1均是质数,则(2n-1)(2n+1)一定为合数,即4n-1一定为合数,当n=3时4n-1=63,而63是质数,假设不成立,
故2n-1与2n+1中至多有一个是质数.

据专家权威分析,试题“(1)将l,2,…,2004这2004个数随意排成一行,得到一个数N.求证:N..”主要考查你对  有理数定义及分类  等考点的理解。关于这些考点的“档案”如下:

有理数定义及分类

考点名称:有理数定义及分类

  • 有理数的定义:
    有理数是整数和分数的统称,一切有理数都可以化成分数的形式。

  • 有理数的分类:
    (1)按有理数的定义:
                                  正整数 
                     整数{     零 
                                  负整数
    有理数{     
                                正分数 
                    分数{
                                负分数
     

    (2)按有理数的性质分类: 
                               正整数  
                   正数{ 
                               正分数
    有理数{  零
                               负整数 
                   负数{
                               负分数

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐