在一次象棋比赛中,每两个选手恰好比赛一局,每局赢者记2分,输者记0分,平局每个选手各记1分,今有4个人统计这次比赛中全部得分的总数,由于有的人粗心,其数据各不相同,分-数学

题文

在一次象棋比赛中,每两个选手恰好比赛一局,每局赢者记2分,输者记0分,平局每个选手各记1分,今有4个人统计这次比赛中全部得分的总数,由于有的人粗心,其数据各不相同,分别为1979,1980,1984,1985,经核实,其中有一人统计无误,则这次比赛共有______名选手参加.
题型:填空题  难度:中档

答案

设共有n个选手参加比赛,每个选手都要与(n-1)个选手比赛一局,共计n(n-1)局,但两个选手的对局从每个选手的角度各自统计了一次,因此实际比赛总局数应为
n(n-1)
2
局.
由于每局共计2分,所以全部选手得分总共为2×
n(n-1)
2
=n(n-1)分.
显然(n-1)与n为相邻的自然数,容易验证,相邻两自然数乘积的末位数字只能是0,2,6,
故总分不可能是1979,1984,1985,
∴总分只能是1980,
∴由n(n-1)=1980,得n2-n-1980=0,解得n1=45,n2=-44(舍去).∴参加比赛的选手共有45人.
故答案为45.

据专家权威分析,试题“在一次象棋比赛中,每两个选手恰好比赛一局,每局赢者记2分,输者..”主要考查你对  有理数定义及分类  等考点的理解。关于这些考点的“档案”如下:

有理数定义及分类

考点名称:有理数定义及分类

  • 有理数的定义:
    有理数是整数和分数的统称,一切有理数都可以化成分数的形式。

  • 有理数的分类:
    (1)按有理数的定义:
                                  正整数 
                     整数{     零 
                                  负整数
    有理数{     
                                正分数 
                    分数{
                                负分数
     

    (2)按有理数的性质分类: 
                               正整数  
                   正数{ 
                               正分数
    有理数{  零
                               负整数 
                   负数{
                               负分数